Synthesis, Characterization and Comparison of Antibacterial Activity of Chitosan Coated Silver and Dithiocarbamate Chitosan Coated Silver Nanoparticles
Year 2025,
Volume: 17 Issue: 1, 151 - 162
Murat İnal
,
Selma Uslu
Abstract
Silver nanoparticles are frequently used in biomedical applications due to their antimicrobial activity, especially in the production of wound dressing materials. In this study, dithiocarbamate chitosan compound, a derivative of chitosan, was synthesised. The synthesised dithiocarbamate chitosan was characterised by scanning electron microscopy, energy dispersive X-ray spectrometry and C13-nuclear magnetic resonance spectroscopy analyses. Silver nanoparticles coated with dithiocarbamate chitosan were successfully synthesised for the first time in this study. Chitosan-coated silver nanoparticles were also synthesised for comparison. The synthesised silver nanoparticles were characterised by ultraviolet-visible region spectrophotometry, size analysis and zeta potential measurements. The antibacterial activities of the synthesised silver nanoparticles against Escherichia coli and Staphylococcus aureus bacteria were tested using liquid medium dilution method. Characterisation results show that dithiocarbamate chitosan was successfully synthesised. The sizes of silver nanoparticles coated with chitosan and dithiocarbamate chitosan were determined as 175.202.98 and 158.001.27 nm and zeta potentials as 29.704.00 and 33.400.26 mV, respectively. From the results of antibacterial activity, it was determined that the synthesised nanoparticles showed a high antibacterial activity against bacteria. As a result, it was determined that dithiocarbamate chitosan coated silver nanoparticles obtained for the first time in this study have a great potential for use in the production of wound dressing materials due to their stability and high antibacterial effect.
Ethical Statement
This study was produced from Selma Uslu's thesis titled ‘Investigation of the Use of Silver and Glycyrrhizic Acid Loaded PVA Cryogels as Wound Dressing’.
Supporting Institution
Kırıkkale University Scientific Research Projects Unit
Project Number
Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri tarafından 2022/047 proje numarası ile desteklenmektedir.
Thanks
Scanning electron microscopy, energy dispersive X-ray spectrometry and C13-nuclear magnetic resonance spectroscopy analyses in this study were performed by METU central research laboratory.
References
- Abou El-Nour, K. M., Eftaiha, A. A., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian journal of chemistry, 3(3), 135-140. doi: 10.1016/j.arabjc.2010.04.008
- Atiyeh, B. S., Costagliola, M., Hayek, S. N., & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: review of the literature. burns, 33(2), 139-148. doi: 10.1016/j.burns.2006.06.010
- Chen, K., Wang, F., Liu, S., Wu, X., Xu, L., & Zhang, D. (2020). In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. International journal of biological macromolecules, 148, 501-509. doi: 10.1016/j.ijbiomac.2020.01.156
- Church, D., Elsayed, S., Reid, O., Winston, B., & Lindsay, R. (2006). Burn wound infections. Clinical microbiology reviews, 19(2), 403-434. doi: 10.1128/cmr.19.2.403-434.2006
- Dara, P. K., Mahadevan, R., Digita, P. A., Visnuvinayagam, S., Kumar, L. R., Mathew, S., Ravishankar, R.N. & Anandan, R. (2020). Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): In vitro studies on antioxidant and antibacterial applications. SN Applied Sciences, 2, 1-12. doi: 10.1007/s42452-020-2261-y
- Gravante, G., Caruso, R., Sorge, R., Nicoli, F., Gentile, P., & Cervelli, V. (2009). Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Annals of plastic surgery, 63(2), 201-205. doi: 10.1097/SAP.0b013e3181893825
- Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology, 48, 40-50. doi: 10.1016/j.tifs.2015.11.007
- Jahromi, M. A. M., Zangabad, P. S., Basri, S. M. M., Zangabad, K. S., Ghamarypour, A., Aref, A. R.,Karimi, M. & Hamblin, M. R. (2018). Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced drug delivery reviews, 123, 33-64. doi: 10.1016/j.addr.2017.08.001
- Khan, A., Badshah, S., & Airoldi, C. (2011). Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids and Surfaces B: Biointerfaces, 87(1), 88-95. doi: 10.1016/j.colsurfb.2011.05.006
- Kumar-Krishnan, S., Prokhorov, E., Hernández-Iturriaga, M., Mota-Morales, J. D., Vázquez-Lepe, M., Kovalenko, Y., Sanchez, I.C. & Luna-Bárcenas, G. (2015). Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 67, 242-251. doi: 10.1016/j.eurpolymj.2015.03.066
- Li, Q., Lu, F., Zhou, G., Yu, K., Lu, B., Xiao, Y., Dai, F., Wu, D. & Lan, G. (2017). Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromolecules, 18(11), 3766-3775. doi: 10.1021/acs.biomac.7b01180
- Liu, J., Hao, J., Dong, W., & Zeng, Y. (2021). Depression mechanism of environment-friendly depressant dithiocarbamate chitosan in flotation separation of Cu-Zn sulfide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126290. doi: 10.1016/j.colsurfa.2021.126290
- Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., & Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate polymers, 156, 460-469. doi: 10.1016/j.carbpol.2016.09.051
- Mira, A. K., Yousef, A. S., & Abdullah, A. (2015). Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. IJERSTE, 4(9), 60-73. https://www.researchgate.net/profile/Mira-Al-Katib/publication/362826406_Biosynthesis_of_Silver_Nanoparticles_by_Cyanobacterium_Gloeocapsa_sp/links/63013bd9e3c7de4c346f093c/Biosynthesis-of-Silver-Nanoparticles-by-Cyanobacterium-Gloeocapsa-sp.pdf
- Muzzarelli, R. A. A., & Tanfani, F. A. B. I. O. (1982). N-(o-carboxybenzyl) chitosan, N-carboxymethyl chitosan and dithiocarbamate chitosan: new chelating derivatives of chitosan. Pure and Applied Chemistry, 54(11), 2141-2150. doi: 10.1351/pac198254112141
- Nagarajan, S., & Arumugam Kuppusamy, K. (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. Journal of nanobiotechnology, 11, 1-11. doi:10.1186/1477-3155-11-39
- Naganthran, A., Verasoundarapandian, G., Khalid, F. E., Masarudin, M. J., Zulkharnain, A., Nawawi, N. M., Karim. M., Abdullah. C.A.C. & Ahmad, S. A. (2022). Synthesis, characterization and biomedical application of silver nanoparticles. Materials, 15(2), 427. doi: 10.3390/ma15020427
- Ogawa, K., Yui, T., & Okuyama, K. (2004). Three D structures of chitosan. International Journal of Biological Macromolecules, 34(1-2), 1-8. doi: 10.1016/j.ijbiomac.2003.11.002
- Pansara, C., Chan, W. Y., Parikh, A., Trott, D. J., Mehta, T., Mishra, R., & Garg, S. (2019). Formulation optimization of chitosan-stabilized silver nanoparticles using in vitro antimicrobial assay. Journal of pharmaceutical sciences, 108(2), 1007-1016. doi: 10.1016/j.xphs.2018.09.011
- Priya, K., Vijayakumar, M., & Janani, B. (2020). Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. International journal of biological macromolecules, 149, 844-852. doi: 10.1016/j.ijbiomac.2020.02.007
- Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., Meng, X., Li, R. & Li, P. (2012). Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity. Carbohydrate polymers, 89(2), 388-393. doi: 10.1016/j.carbpol.2012.03.018
- Rajeshkumar, S., Kannan, C., & Annadurai, G. (2012). Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. International Journal of Pharma and Bio Sciences, 3(4), 502-510. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=770c42f5f0389d4a5298fe8693645dcc3f2c44d3
- Rodríguez-Argüelles, M. C., Sieiro, C., Cao, R., & Nasi, L. (2011). Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. Journal of colloid and interface science, 364(1), 80-84. doi: 10.1016/j.jcis.2011.08.006
- Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., & Hashem, A. H. (2022). Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. Journal of Fungi, 8(6), 612. doi: 10.3390/jof8060612
- Suteewong, T., Wongpreecha, J., Polpanich, D., Jangpatarapongsa, K., Kaewsaneha, C., & Tangboriboonrat, P. (2019). PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. Colloids and Surfaces B: Biointerfaces, 174, 544-552. doi: 10.1016/j.colsurfb.2018.11.037
- Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262. doi: 10.1016/j.nano.2009.07.002
- Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. International journal of molecular sciences, 21(2), 487. doi: 10.3390/ijms21020487
- Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 3(2), 163-175. doi: 10.1038/nprot.2007.521
- Yan, K., Xu, F., Wei, W., Yang, C., Wang, D., & Shi, X. (2021). Electrochemical synthesis of chitosan/silver nanoparticles multilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property. Colloids and Surfaces B: Biointerfaces, 202, 111711. doi: 10.1016/j.colsurfb.2021.111711
- Ye, H., Cheng, J., & Yu, K. (2019). In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. International journal of biological macromolecules, 121, 633-642. doi: 10.1016/j.ijbiomac.2018.10.056
- Yin, Z., Qiu, D., & Zhang, M. (2021). Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan. Environmental Pollution, 271, 116322. doi: 10.1016/j.envpol.2020.116322
- Zhou, L., Zhao, X., Li, M., Yan, L., Lu, Y., Jiang, C., Liu, Y., Pan, Z. & Shi, J. (2021). Antibacterial and wound healing–promoting effect of sponge-like chitosan-loaded silver nanoparticles biosynthesized by iturin. International journal of biological macromolecules, 181, 1183-1195. doi: 10.1016/j.ijbiomac.2021.04.119
Kitosan kaplanmış gümüş ve ditiyokarbamat kitosan kaplanmış gümüş nanopartiküllerin sentezi, karakterizasyonu ve antibakteriyel aktivitelerinin karşılaştırılması
Year 2025,
Volume: 17 Issue: 1, 151 - 162
Murat İnal
,
Selma Uslu
Abstract
Gümüş nanopartiküller yüksek yüzey-hacim oranı nedeniyle, düşük konsantrasyonda bile antimikrobiyal aktivite sergilemektedirler. Bununla birlikte, düşük maliyet, düşük sitotoksisite ve immünolojik yanıt göstermektedirler. Bu nedenle, gümüş nanopartiküller antimikrobiyal aktiviteleri sebebiyle biyomedikal uygulamalarda özellikle yara örtü malzemelerinin üretiminde sıklıkla kullanılmaktadır.
Bu çalışma da kitosanın bir türevi olan ditiyokarbamat kitosan bileşiği sentezlenmiştir. Sentezlenen ditiyokarbamat kitosan taramalı elektron mikroskobu, enerji dağılım X-ışını spektrometresi ve C13-nükleer manyetik rezonans spektroskopisi analizleri ile karakterize edilmiştir. Daha sonra ilk defa bu çalışmada ditiyokarbamat kitosan ile kaplanmış gümüş nanopartiküller başarı ile sentezlenmiştir. Ayrıca karşılaştırma için kitosan ile kaplanmış gümüş nanopartiküller sentezlenmiştir. Sentezlenen gümüş nanopartiküller ultraviyole-görünür bölge spektrofotometresi, boyut analizleri ve zeta potansiyel ölçümleri ile karakterize edilmiştir. Sentezlenen gümüş nanopartiküllerin Escherichia coli ve Staphylococcus aureus bakterilerine karşı antibakteriyel aktiviteleri sıvı kültür ortamında test edilmiştir.
Karakterizasyon sonuçları ditiyokarbamat kitosanın başarılı bir şekilde sentezlendiğini göstermektedir. Kitosan ve ditiyokarbamat kitosan ile kaplanmış gümüş nanopartiküllerin boyutları sırasıyla 175 ve 158 nm ve zeta potansiyelleri ise yaklaşık 30 mV olarak belirlenmiştir. Antibakteriyel aktivite sonuçlarından sentezlenen nanopartiküllerin bakterilere karşı yüksek bir antibakteriyel aktivite gösterdiği belirlenmiştir. Sonuç olarak ilk defa bu çalışmada elde edilen ditiyokarbamat kitosan kaplanmış gümüş nanopartiküllerin kararlılıkları ve yüksek antibakteriyel etkisi sebebiyle yara örtü malzemelerinin üretiminde kullanımı açısından büyük bir potansiyele sahip olduğu belirlenmiştir.
Ethical Statement
Bu çalışma Selma Uslu’nun “Gümüş ve Gilisirizik Asit Yüklenmiş PVA Kriyojellerinin Yara Örtüsü Olarak Kullanımının İncelenmesi” isimli tez çalışmasından üretilmiştir.
Supporting Institution
Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri tarafından 2022/047 proje numarası ile desteklenmektedir.
Thanks
Çalışmada kullanılan taramalı elektron mikroskobu, enerji dağılım X-ışını spektrometresi ve C13-nükleer manyetik rezonans spektroskopisi analizleri ODTÜ merkezi araştırma laboratuvarı tarafından yapılmıştır.
References
- Abou El-Nour, K. M., Eftaiha, A. A., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian journal of chemistry, 3(3), 135-140. doi: 10.1016/j.arabjc.2010.04.008
- Atiyeh, B. S., Costagliola, M., Hayek, S. N., & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: review of the literature. burns, 33(2), 139-148. doi: 10.1016/j.burns.2006.06.010
- Chen, K., Wang, F., Liu, S., Wu, X., Xu, L., & Zhang, D. (2020). In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. International journal of biological macromolecules, 148, 501-509. doi: 10.1016/j.ijbiomac.2020.01.156
- Church, D., Elsayed, S., Reid, O., Winston, B., & Lindsay, R. (2006). Burn wound infections. Clinical microbiology reviews, 19(2), 403-434. doi: 10.1128/cmr.19.2.403-434.2006
- Dara, P. K., Mahadevan, R., Digita, P. A., Visnuvinayagam, S., Kumar, L. R., Mathew, S., Ravishankar, R.N. & Anandan, R. (2020). Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): In vitro studies on antioxidant and antibacterial applications. SN Applied Sciences, 2, 1-12. doi: 10.1007/s42452-020-2261-y
- Gravante, G., Caruso, R., Sorge, R., Nicoli, F., Gentile, P., & Cervelli, V. (2009). Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Annals of plastic surgery, 63(2), 201-205. doi: 10.1097/SAP.0b013e3181893825
- Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology, 48, 40-50. doi: 10.1016/j.tifs.2015.11.007
- Jahromi, M. A. M., Zangabad, P. S., Basri, S. M. M., Zangabad, K. S., Ghamarypour, A., Aref, A. R.,Karimi, M. & Hamblin, M. R. (2018). Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced drug delivery reviews, 123, 33-64. doi: 10.1016/j.addr.2017.08.001
- Khan, A., Badshah, S., & Airoldi, C. (2011). Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids and Surfaces B: Biointerfaces, 87(1), 88-95. doi: 10.1016/j.colsurfb.2011.05.006
- Kumar-Krishnan, S., Prokhorov, E., Hernández-Iturriaga, M., Mota-Morales, J. D., Vázquez-Lepe, M., Kovalenko, Y., Sanchez, I.C. & Luna-Bárcenas, G. (2015). Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 67, 242-251. doi: 10.1016/j.eurpolymj.2015.03.066
- Li, Q., Lu, F., Zhou, G., Yu, K., Lu, B., Xiao, Y., Dai, F., Wu, D. & Lan, G. (2017). Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromolecules, 18(11), 3766-3775. doi: 10.1021/acs.biomac.7b01180
- Liu, J., Hao, J., Dong, W., & Zeng, Y. (2021). Depression mechanism of environment-friendly depressant dithiocarbamate chitosan in flotation separation of Cu-Zn sulfide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126290. doi: 10.1016/j.colsurfa.2021.126290
- Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., & Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate polymers, 156, 460-469. doi: 10.1016/j.carbpol.2016.09.051
- Mira, A. K., Yousef, A. S., & Abdullah, A. (2015). Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. IJERSTE, 4(9), 60-73. https://www.researchgate.net/profile/Mira-Al-Katib/publication/362826406_Biosynthesis_of_Silver_Nanoparticles_by_Cyanobacterium_Gloeocapsa_sp/links/63013bd9e3c7de4c346f093c/Biosynthesis-of-Silver-Nanoparticles-by-Cyanobacterium-Gloeocapsa-sp.pdf
- Muzzarelli, R. A. A., & Tanfani, F. A. B. I. O. (1982). N-(o-carboxybenzyl) chitosan, N-carboxymethyl chitosan and dithiocarbamate chitosan: new chelating derivatives of chitosan. Pure and Applied Chemistry, 54(11), 2141-2150. doi: 10.1351/pac198254112141
- Nagarajan, S., & Arumugam Kuppusamy, K. (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. Journal of nanobiotechnology, 11, 1-11. doi:10.1186/1477-3155-11-39
- Naganthran, A., Verasoundarapandian, G., Khalid, F. E., Masarudin, M. J., Zulkharnain, A., Nawawi, N. M., Karim. M., Abdullah. C.A.C. & Ahmad, S. A. (2022). Synthesis, characterization and biomedical application of silver nanoparticles. Materials, 15(2), 427. doi: 10.3390/ma15020427
- Ogawa, K., Yui, T., & Okuyama, K. (2004). Three D structures of chitosan. International Journal of Biological Macromolecules, 34(1-2), 1-8. doi: 10.1016/j.ijbiomac.2003.11.002
- Pansara, C., Chan, W. Y., Parikh, A., Trott, D. J., Mehta, T., Mishra, R., & Garg, S. (2019). Formulation optimization of chitosan-stabilized silver nanoparticles using in vitro antimicrobial assay. Journal of pharmaceutical sciences, 108(2), 1007-1016. doi: 10.1016/j.xphs.2018.09.011
- Priya, K., Vijayakumar, M., & Janani, B. (2020). Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. International journal of biological macromolecules, 149, 844-852. doi: 10.1016/j.ijbiomac.2020.02.007
- Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., Meng, X., Li, R. & Li, P. (2012). Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity. Carbohydrate polymers, 89(2), 388-393. doi: 10.1016/j.carbpol.2012.03.018
- Rajeshkumar, S., Kannan, C., & Annadurai, G. (2012). Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. International Journal of Pharma and Bio Sciences, 3(4), 502-510. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=770c42f5f0389d4a5298fe8693645dcc3f2c44d3
- Rodríguez-Argüelles, M. C., Sieiro, C., Cao, R., & Nasi, L. (2011). Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. Journal of colloid and interface science, 364(1), 80-84. doi: 10.1016/j.jcis.2011.08.006
- Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., & Hashem, A. H. (2022). Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. Journal of Fungi, 8(6), 612. doi: 10.3390/jof8060612
- Suteewong, T., Wongpreecha, J., Polpanich, D., Jangpatarapongsa, K., Kaewsaneha, C., & Tangboriboonrat, P. (2019). PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. Colloids and Surfaces B: Biointerfaces, 174, 544-552. doi: 10.1016/j.colsurfb.2018.11.037
- Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262. doi: 10.1016/j.nano.2009.07.002
- Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. International journal of molecular sciences, 21(2), 487. doi: 10.3390/ijms21020487
- Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 3(2), 163-175. doi: 10.1038/nprot.2007.521
- Yan, K., Xu, F., Wei, W., Yang, C., Wang, D., & Shi, X. (2021). Electrochemical synthesis of chitosan/silver nanoparticles multilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property. Colloids and Surfaces B: Biointerfaces, 202, 111711. doi: 10.1016/j.colsurfb.2021.111711
- Ye, H., Cheng, J., & Yu, K. (2019). In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. International journal of biological macromolecules, 121, 633-642. doi: 10.1016/j.ijbiomac.2018.10.056
- Yin, Z., Qiu, D., & Zhang, M. (2021). Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan. Environmental Pollution, 271, 116322. doi: 10.1016/j.envpol.2020.116322
- Zhou, L., Zhao, X., Li, M., Yan, L., Lu, Y., Jiang, C., Liu, Y., Pan, Z. & Shi, J. (2021). Antibacterial and wound healing–promoting effect of sponge-like chitosan-loaded silver nanoparticles biosynthesized by iturin. International journal of biological macromolecules, 181, 1183-1195. doi: 10.1016/j.ijbiomac.2021.04.119