Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 671 - 681, 30.12.2022
https://doi.org/10.29133/yyutbd.1145446

Öz

Kaynakça

  • Correia, M. A. R., Maranhão, D. D. C., Flores, R. A., da Silva, S. F., de Araujo, M. A., & de Lima Leite, R. L. (2017). Growth, nutrition and production of dry matter of rubber tree ('Hevea brasiliensis') in function of K fertilization. Australian Journal of Crop Science, 11(1), 95–101. https://doi.org/10.21475/ajcs.2017.11.01.268.
  • Fageria, N. K. (1983). Ionic interactions in rice plants from dilute solutions. Plant and Soil, 70, 309–316. https://doi.org/10.1007/BF02374887.
  • Food and Agriculture Organization of the United Nations. (2016). FAOSTAT statistics database. https://search.library.wisc.edu/catalog/999882363002121.
  • Guo, K. M., Babourina, O., Christopher, D. A., Borsic, T., & Rengel, Z. (2010). The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiologia Plantarum, 139(3), 303–312. https://doi.org/10.1111/j.1399-3054.2010.01366.x.
  • Hytönen, J., Nurmi, J., Kaakkurivaara, N., & Kaakkurivaara, T. (2019). Rubber tree (Hevea brasiliensis) biomass, nutrient content, and heating values in Southern Thailand. Forests, 10(8), 638. https://doi.org/10.3390/f10080638.
  • Karley, A. J., & White, P. J. (2009). Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Current Opinion in Plant Biology, 12(3), 291–298. https://doi.org/10.1016/j.pbi.2009.04.013.
  • Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (2001). Potassium. In K. Mengel, E. A. Kirby, H. Kosegarten, & T. Appel (Eds.), Principles of Plant Nutrition (pp. 481–511). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2_10.
  • Mokhatar, S. J., Daud, N. W., & Ishak, C. F. (2012). Response of Hevea brasiliensis (RRIM 2001) planted on an oxisol to different rates of fertilizer application. Malaysian Journal of Soil Science, 16(1), 57–69.
  • Murbach, M. R., Boaretto, A. E., Muraoka, T., & Souza, E. C. A. D. (2003). Nutrient cycling in a RRIM 600 clone rubber plantation. Scientia Agricola, 60(2), 353–357. https://doi.org/10.1590/S0103-90162003000200021.
  • Nguyen, H. H., Maneepong, S., & Suraninpong, P. (2015). Behavior of nutrient uptake by pummelo growing on salt marsh soil. In Proceedings of 2nd International Symposium on Agricultural Technology, Pattaya, Thailand. pp.101–105.
  • Öborn, I., Edwards, A. C., Witter, E., Oenema, O., Ivarsson, K., Withers, P. J. A., Nilsson, S. I., & Stinzing, A. R. (2003). Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy, 20(1-2), 211–225. https://doi.org/10.1016/S1161-0301(03)00080-7.
  • Rhodes, R., Miles, N., & Hughes, J. C. (2018). Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research, 223, 1–11. https://doi.org/10.1016/j.fcr.2018.01.001.
  • Singh, R. P., Mandal, D., Joseph, M., Sarma, A. C., Gupta, C. K., & Krishnakumar, A. K. (2005). Effect of potassium and magnesium interaction on soil properties and growth of immature Hevea brasiliensis in Assam. Natural Rubber Research, 18, 161–171.
  • Soil Research Institute. (2009). Technical guide 2: chemical analysis of soil, plants, water and fertilizer. Bogor, Indonesia. 246 p.
  • Suchartgul, S., Maneepong, S., & Issarakrisila, M. (2011). Establishment of standard values for nutritional diagnosis in soil and leaves of immature rubber tree. IRRDB International Rubber Conference 15-16 December 2011 in Chiang Mai, Thailand.
  • Thitithanakul, S., Ma, N., Sukkawong, S., & Jaikrajang, B. (2017). Determination of nitrogen and phosphorus requirement of the RRIM 600 and RRIT 251 young rubber trees. Walailak Journal of Science and Technology, 14(7), 571–580. https://wjst.wu.ac.th/index.php/wjst/article/view/2379.
  • Tromp, J., & van Vuure, J. (1993). Accumulation of calcium, potassium and magnesium in apple fruits under various conditions of humidity. Physiologia Plantarum, 89(1), 149–156. https://doi.org/10.1111/j.1399-3054.1993.tb01798.x.
  • Vaysse, L., Bonfils, F., Sainte-Beuve, J., & Cartault, M. (2012). 10.1. 7-Natural rubber. In J. E. McGrath, M. A. Hickner, & R. Höfer (Eds.), Polymer science: A comprehensive reference. Polymers for a sustainable environment and green energy, Elsevier, Amsterdam, 281.
  • Voogt, W. (1987). The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution. Acta Horticulturae, 222, 155–166. https://doi.org/10.17660/ActaHortic.1988.222.18.
  • Vrignon-Brenas, S., Gay, F., Ricard, S., Snoeck, D., Perron, T., Mareschal, L., Laclau, J. P., Gohet, E., & Malagoli, P. (2019). Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development, 39(11), 11. https://doi.org/10.1007/s13593-019-0554-6.
  • Wang, X., Wang, D., Sun, Y., Yang, Q., Chang, L., Wang, L., Meng, X., Huang, Q., Jin, X., & Tong, Z. (2015). Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Scientific Reports, 5, 13778. https://doi.org/10.1038/srep13778.
  • Weerasuriya, S. M., & Yogaratnam, N. (1988). Effect of potassium and magnesium on growth of young Hevea brasiliensis. Rubber Research Institute, Sri Lanka, 17–31.
  • White, P. J. (2001). The pathways of calcium movement to the xylem. Journal of Experimental Botany, 52(358), 891–899. https://doi.org/10.1093/jexbot/52.358.891.
  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511. https://doi.org/10.1093/aob/mcg164.
  • Xie, K., Cakmak, I., Wang, S., Zhang, F., & Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249–256. https://doi.org/10.1016/j.cj.2020.10.005.
  • Zhu, L., Jin, X., Xie, Q., Yao, Q., Wang, X., & Li, H. (2018). Calcium-dependent protein kinase family genes involved in ethylene-induced natural rubber production in different Hevea brasiliensis cultivars. International Journal of Molecular Sciences, 19(4), 947. https://doi.org/10.3390/ijms19040947.

Cations-Base Application in Rubber Plantation: The Change of Calcium, Magnesium, and Potassium Status in the Soil and Leaves and Its Relation to Latex Yield

Yıl 2022, , 671 - 681, 30.12.2022
https://doi.org/10.29133/yyutbd.1145446

Öz

Nutrient balance in the soil support plant growth and yield. The objective of this study was aimed to obtain doses of calcium, magnesium, and potassium fertilizers in relation to the ratio of cations-base (Ca2+, Mg2+, K+) to increase latex yield in rubber plants. The study was conducted on a rubber plantation in Dolok Masihul Sub-district, Serdang Bedagai District, North Sumatra, Indonesia, from January to August 2019. The treatment was used with three factors, including the first factor was CaCO3 (0; 1 500 g/tree/year), the second factor of MgSO4.H2O (0; 1 500; 3 000; 4 500 g/tree/year), and the third factor by KCl (0; 500; 1 000; 1 500 g/tree/year) in a Randomized Block Design (RBD) within three replicates. Results showed that the calcium of 1 500 g/tree/year increased the Mg-latex and latex yield by 160.70 g/tree/tapping. An increase in the three cations-base in soil, leaves, latex, and latex yield was also observed after the application of magnesium ranged by 1 500 to 4 500 g/tree/year. The potassium 500 - 1 500 g/tree/year increased the cations-base in soil, latex, and Ca-leaves. The interaction of calcium 1 500 + magnesium 1 500 - 4 500 and potassium 0-1 500 g/tree/year increased the exchange-K, Mg-latex, and also Mg- and K-leaves. The ratio of Ca:Mg:K in soil, leaves, and latex were 2: 1: 2 (optimum), 5: 1: 11 (high), and 1: 11: 32. The Ca, Mg, K in leaves and K-latex positively correlates and increases latex yield due to the three fertilizations.

Kaynakça

  • Correia, M. A. R., Maranhão, D. D. C., Flores, R. A., da Silva, S. F., de Araujo, M. A., & de Lima Leite, R. L. (2017). Growth, nutrition and production of dry matter of rubber tree ('Hevea brasiliensis') in function of K fertilization. Australian Journal of Crop Science, 11(1), 95–101. https://doi.org/10.21475/ajcs.2017.11.01.268.
  • Fageria, N. K. (1983). Ionic interactions in rice plants from dilute solutions. Plant and Soil, 70, 309–316. https://doi.org/10.1007/BF02374887.
  • Food and Agriculture Organization of the United Nations. (2016). FAOSTAT statistics database. https://search.library.wisc.edu/catalog/999882363002121.
  • Guo, K. M., Babourina, O., Christopher, D. A., Borsic, T., & Rengel, Z. (2010). The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiologia Plantarum, 139(3), 303–312. https://doi.org/10.1111/j.1399-3054.2010.01366.x.
  • Hytönen, J., Nurmi, J., Kaakkurivaara, N., & Kaakkurivaara, T. (2019). Rubber tree (Hevea brasiliensis) biomass, nutrient content, and heating values in Southern Thailand. Forests, 10(8), 638. https://doi.org/10.3390/f10080638.
  • Karley, A. J., & White, P. J. (2009). Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Current Opinion in Plant Biology, 12(3), 291–298. https://doi.org/10.1016/j.pbi.2009.04.013.
  • Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (2001). Potassium. In K. Mengel, E. A. Kirby, H. Kosegarten, & T. Appel (Eds.), Principles of Plant Nutrition (pp. 481–511). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2_10.
  • Mokhatar, S. J., Daud, N. W., & Ishak, C. F. (2012). Response of Hevea brasiliensis (RRIM 2001) planted on an oxisol to different rates of fertilizer application. Malaysian Journal of Soil Science, 16(1), 57–69.
  • Murbach, M. R., Boaretto, A. E., Muraoka, T., & Souza, E. C. A. D. (2003). Nutrient cycling in a RRIM 600 clone rubber plantation. Scientia Agricola, 60(2), 353–357. https://doi.org/10.1590/S0103-90162003000200021.
  • Nguyen, H. H., Maneepong, S., & Suraninpong, P. (2015). Behavior of nutrient uptake by pummelo growing on salt marsh soil. In Proceedings of 2nd International Symposium on Agricultural Technology, Pattaya, Thailand. pp.101–105.
  • Öborn, I., Edwards, A. C., Witter, E., Oenema, O., Ivarsson, K., Withers, P. J. A., Nilsson, S. I., & Stinzing, A. R. (2003). Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy, 20(1-2), 211–225. https://doi.org/10.1016/S1161-0301(03)00080-7.
  • Rhodes, R., Miles, N., & Hughes, J. C. (2018). Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research, 223, 1–11. https://doi.org/10.1016/j.fcr.2018.01.001.
  • Singh, R. P., Mandal, D., Joseph, M., Sarma, A. C., Gupta, C. K., & Krishnakumar, A. K. (2005). Effect of potassium and magnesium interaction on soil properties and growth of immature Hevea brasiliensis in Assam. Natural Rubber Research, 18, 161–171.
  • Soil Research Institute. (2009). Technical guide 2: chemical analysis of soil, plants, water and fertilizer. Bogor, Indonesia. 246 p.
  • Suchartgul, S., Maneepong, S., & Issarakrisila, M. (2011). Establishment of standard values for nutritional diagnosis in soil and leaves of immature rubber tree. IRRDB International Rubber Conference 15-16 December 2011 in Chiang Mai, Thailand.
  • Thitithanakul, S., Ma, N., Sukkawong, S., & Jaikrajang, B. (2017). Determination of nitrogen and phosphorus requirement of the RRIM 600 and RRIT 251 young rubber trees. Walailak Journal of Science and Technology, 14(7), 571–580. https://wjst.wu.ac.th/index.php/wjst/article/view/2379.
  • Tromp, J., & van Vuure, J. (1993). Accumulation of calcium, potassium and magnesium in apple fruits under various conditions of humidity. Physiologia Plantarum, 89(1), 149–156. https://doi.org/10.1111/j.1399-3054.1993.tb01798.x.
  • Vaysse, L., Bonfils, F., Sainte-Beuve, J., & Cartault, M. (2012). 10.1. 7-Natural rubber. In J. E. McGrath, M. A. Hickner, & R. Höfer (Eds.), Polymer science: A comprehensive reference. Polymers for a sustainable environment and green energy, Elsevier, Amsterdam, 281.
  • Voogt, W. (1987). The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution. Acta Horticulturae, 222, 155–166. https://doi.org/10.17660/ActaHortic.1988.222.18.
  • Vrignon-Brenas, S., Gay, F., Ricard, S., Snoeck, D., Perron, T., Mareschal, L., Laclau, J. P., Gohet, E., & Malagoli, P. (2019). Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development, 39(11), 11. https://doi.org/10.1007/s13593-019-0554-6.
  • Wang, X., Wang, D., Sun, Y., Yang, Q., Chang, L., Wang, L., Meng, X., Huang, Q., Jin, X., & Tong, Z. (2015). Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Scientific Reports, 5, 13778. https://doi.org/10.1038/srep13778.
  • Weerasuriya, S. M., & Yogaratnam, N. (1988). Effect of potassium and magnesium on growth of young Hevea brasiliensis. Rubber Research Institute, Sri Lanka, 17–31.
  • White, P. J. (2001). The pathways of calcium movement to the xylem. Journal of Experimental Botany, 52(358), 891–899. https://doi.org/10.1093/jexbot/52.358.891.
  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511. https://doi.org/10.1093/aob/mcg164.
  • Xie, K., Cakmak, I., Wang, S., Zhang, F., & Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249–256. https://doi.org/10.1016/j.cj.2020.10.005.
  • Zhu, L., Jin, X., Xie, Q., Yao, Q., Wang, X., & Li, H. (2018). Calcium-dependent protein kinase family genes involved in ethylene-induced natural rubber production in different Hevea brasiliensis cultivars. International Journal of Molecular Sciences, 19(4), 947. https://doi.org/10.3390/ijms19040947.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Makaleler
Yazarlar

Irwan Agusnu Putra 0000-0003-3921-0382

Hamidah Hanum Bu kişi benim 0000-0002-6883-7566

Radite Tıstama Bu kişi benim

Edison Purba Bu kişi benim 0000-0002-9366-2489

Yayımlanma Tarihi 30 Aralık 2022
Kabul Tarihi 7 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Putra, I. A., Hanum, H., Tıstama, R., Purba, E. (2022). Cations-Base Application in Rubber Plantation: The Change of Calcium, Magnesium, and Potassium Status in the Soil and Leaves and Its Relation to Latex Yield. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(4), 671-681. https://doi.org/10.29133/yyutbd.1145446

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.