Nematophagous Fungi Isolated from Municipal Waste-contaminated Soil in Medan City, North Sumatera: Morphological Identification, Phylogeny Analysis and Assessment as Root-knot Nematodes Biocontrol
Yıl 2023,
, 522 - 533, 31.12.2023
Liana Hastuti
,
Retno Widia Sari
,
Fachri Fauzi
,
Desy Christine Naibaho
,
Reza Triyanto Purba
,
Qisti Aqila Putri
Öz
Root-knot nematodes (RKNs) are groups of nematodes that cause significant diseases in horticultural and field crops. Chemical pesticides used to control RKNs could pollute environmental resources and ultimately affect human health. Therefore, eco-friendly efforts are needed. Previous research revealed that nematode-trapping fungi (NTFs) as the biological enemies of nematodes has been observed suppressing the nematode population. This study aimed to isolate NTF species from municipal waste-contaminated soil in Medan City, Indonesia, and identified them using morphological and molecular analysis. Furthermore, their biocontrol potential against Meloidogyne hapla Chitwood (Nematoda: Meloidogynidae) was assessed. Soil sample covered seven districts with seven repeats for isolation and in vitro assessment against M. hapla was done on CMA and observed after 12-72 hours. Three isolates were successfully obtained and proven effective in suppressing M. hapla by 97.7% (isolate sH51 and sH52) and 89.27% (isolate sH53). Morphological identification on PDA and genetic analysis of ITS concluded that sH51 is Drechslerella brochopaga Drechsler (Ascomycota: Orbiliaceae) and sH53 is Arthrobotrys thaumasius Drechsler (Ascomycota: Orbiliaceae). Morphological analysis for isolate sH52 reveals it as Arthrobotrys sinensis but is limited to Arthrobotrys sp. based on phylogeny analysis thus additional gen needs to be sequenced for confirmation.
Destekleyen Kurum
Lembaga Pengabdian Kepada Masyarakat, Universitas Sumatera Utara
Proje Numarası
324/UN5.2.3.1/PPM/KP-TALENTA and 45/UN5.2.3.1/PPM/KP-DRPM/2019
Teşekkür
This research was ostensibly supported by 2021 TALENTA and DRPM Program funded by Lembaga Pengabdian Kepada Masyarakat (Community Service Institution), Universitas Sumatera Utara under scheme 324/UN5.2.3.1/PPM/KP-TALENTA USU/2019 and 45/UN5.2.3.1/PPM/KP-DRPM/2019.
Kaynakça
- Asyiah, I. N., Prihatin, J., Hastuti, A. D., Winarso, S., Widjayanthi, L., Nugroho, D., Firmansyah, K., & Pradana, A. P. (2021). Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodiversitas Journal of Biological Diversity, 22(6), 3256–3264. https://doi.org/10.13057/biodiv/d220630
- Cho, C. H., Kang, D. S., Kim, Y. J., & Whang, K. S. (2008). Morphological and phylogenetic characteristics of a nematophagous fungus, Drechslerella brochopaga Kan-23. Korean Journal of Microbiology, 44(1), 63–68.
https://agris.fao.org/agris-search/search.do?recordID=KR2009000665
- Elshafie, A. E., Al-Mueini, R., Al-Bahry, S. N., Akindi, A. Y., Mahmoud, I., & Al-Rawahi, S. H. (2006). Diversity and trapping efficiency of nematophagous fungi from Oman. Phytopathologia Mediterranea, 45(3), 266–270. https://squ.pure.elsevier.com/en/publications/diversity-and-trapping-efficiency-of-nematophagous-fungi-from-oma
- Göze Özdemir, F. G., Tosun, B., Şanlı, A. & Karadoğan, T. (2021). Türkiye’de Yetişen Bazı Apiaceae Türlerinin Uçucu Yağlarının Kök Lezyon Nematodlarına Karşı Nematisidal Aktiviteleri. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(2), 425-433. https://doi.org/10.29133/yyutbd.796093
- Güven, A. & Koç, İ. (2020). Bazı Pestisit Uygulamalarından Sonra Toprakta Hedef Olmayan Nematod, Bakteri ve Mikrofungus Popülasyonlarının Değişimi. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(2), 252-265. https://doi.org/10.29133/yyutbd.689385
- Hastuti, L. D. S., Berliani, K., Mulya, M. B., Hartanto, A., & Pahlevi, S. (2021). Genetic sequence analysis of Arthrobotrys thaumasia DS01 (Monacrosporium thaumasium): A new report from North Sumatra, Indonesia. IOP C. Ser. Earth Env., 912(1), 012104. https://doi.org/10.1088/1755-1315/912/1/012104
- Hastuti, L. D. S., & Faull, J. (2018). An investigation on Sumateran Arthrobotrys oligospora and carbofuran against root-knot nematode (Meloidogyne hapla) on tomato (Solanum lycopersicum Mill.). International Journal of Scientific & Technology Research, 7(1), 32–38. https://www.ijstr.org/paper-references.php?ref=IJSTR-1217-18361
- Hastuti, L. D. S., Nicklin, J., & Siregar, A. Z. (1970). Two Entomophagous Isolated from Sumatera Utara; Potential as Biocontrol Agent Against Nematode. Jurnal Pertanian Tropik, 3(1), 43–51. https://doi.org/10.32734/jpt.v3i1.2955
- Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9(9), 868–877. https://doi.org/10.1101/GR.9.9.868
- Istiqomah, D., & Pradana, A. P. (2017). Review: teknik pengendalian nematoda puru akar (Meloidogyne spp.) ramah lingkungan. Prosiding Seminar Nasional Pencapaian Swasembada Pangan Melalui Pertanian Berkelanjutan, 1–10. https://doi.org/10.31219/osf.io/wu42m
- Kang, H., Choi, I., Park, N., Bae, C., & Kim, D. (2019). Nematode-Trapping Fungi Showed Different Predacity among Nematode Species. Research in Plant Disease, 25(3), 149–155. https://doi.org/10.5423/RPD.2019.25.3.149
- Mendoza-de Gives, P. (2022). Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens, 11(6), 640. https://doi.org/10.3390/pathogens11060640
- Migunova, V. D., & Sasanelli, N. (2021). Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. Plants, 10(2), 389. http://dx.doi.org/10.3390/plants10020389
- Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 259, 127419. https://doi.org/10.1016/j.chemosphere.2020.127419
- Purba, R. T. T., Fauzi, F., Sari, R. W., Naibaho, D. C., Putri, Q. A., Maulana, A., Hastuti, L. D. S., & Punnapayak, H. (2022). Arthrobotrys thaumasia and Arthrobotrys musiformis as biocontrol agents against Meloidogyne hapla on tomato plant. Biodiversitas Journal of Biological Diversity, 23(7), 3659–3666. https://doi.org/10.13057/biodiv/d230743
- Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod., 80(3), 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085
- Sharma, M., Saini, I., Kaushik, P., Aldawsari, M. M., Balawi, T. al, & Alam, P. (2021). Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi J. Biol. Sci., 28(7), 3685–3691. https://doi.org/10.1016/J.SJBS.2021.05.054
- Sim, S. F., Chung, L. Y., Jonip, J., & Chai, L. K. (2019). Uptake and dissipation of carbofuran and its metabolite in Chinese kale and brinjal cultivated under humid tropic climate. Advances in Agriculture, 2019, 1-7. https://www.hindawi.com/journals/aag/2019/7937086/
- Singh, U. B., Singh, S., Khan, W., Malviya, D., Sahu, P. K., Chaurasia, R., Sharma, S. K., & Saxena, A. K. (2019). Drechslerella dactyloides and Dactylaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. Indian Phytopathology, 72(2), 309–320. https://doi.org/10.1007/s42360-019-00132-x
- Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01
- Su, H., Zhao, Y., Zhou, J., Feng, H., Jiang, D., Zhang, K. Q., & Yang, J. (2017). Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol. Rev., 92(1), 357–368. https://doi.org/10.1111/brv.12233
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol., 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120
- Tarigan, W. E. (2021). Jamur Pemerangkap Nematoda Asal Danau Toba sebagai Agen Biokontrol Hayati Meloidogyne Hapla pada Tanaman Tomat (Solanum Lycopersicum L.). https://repositori.usu.ac.id/handle/123456789/32507
- Wang, F. H., Xu, Q., Wang, B., Wang, K. Y., Xue, Y. J., Cai, B., Wang, F., Liu, Y., Cai, K., & Cao, X. (2017). Isolation, identification and characterisation of the nematophagous fungus Arthrobotrys thaumasia (Monacrosporium thaumasium) from China. Biocontrol Science and Technology, 27(3), 378–392. https://doi.org/10.1080/09583157.2017.1291908
- Winarto, W., Trizelia, T., & Yenny, L. (2019). Eksplorasi jamur antagonis terhadap nematoda bengkak akar (Meloidogyne spp.) dari rizosfer tanaman tomat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 194–198. https://doi.org/10.13057/psnmbi/m050208
- Xie, H., Aminuzzaman, F. M., Xu, L., Lai, Y., Li, F., & Liu, X. (2010). Trap induction and trapping in eight nematode-trapping fungi (Orbiliaceae) as affected by juvenile stage of Caenorhabditis elegans. Mycopathologia, 169(6), 467–473. https://doi.org/10.1007/S11046-010-9279-4
- Youssef, M. M. A., & El-Nagdi, W. M. A. (2021). New Approach for Biocontrolling Root-Knot Nematode, Meloidogyne incognita on Cowpea by Commercial Fresh Oyster Mushroom (Pleurotus ostreatus). Jordan Journal of Biological Sciences, 14(01), 173–177. https://doi.org/10.54319/jjbs/140122
- Yu, Z., Mo, M., Zhang, Y., & Zhang, K. Q. (2014). Taxonomy of Nematode-Trapping Fungi from Orbiliaceae, Ascomycota. In K.-Q. Zhang & K. D. Hyde (Eds.), Nematode-Trapping Fungi (Vol. 23, pp. 41–210). Springer. https://doi.org/10.1007/978-94-017-8730-7_3
- Yusuf, C. (2019). Berkenalan dengan Nematode Trapping Fungi: Alternatif Biokontrol Nematoda. Peneliti PPBBI, 7(1), 13–15.
- Zhang, Y., Li, S., Li, H., Wang, R., Zhang, K. Q., & Xu, J. (2020). Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. Journal of Fungi, 6(4), 206. https://doi.org/10.3390/jof6040206
- Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol., 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478
Yıl 2023,
, 522 - 533, 31.12.2023
Liana Hastuti
,
Retno Widia Sari
,
Fachri Fauzi
,
Desy Christine Naibaho
,
Reza Triyanto Purba
,
Qisti Aqila Putri
Proje Numarası
324/UN5.2.3.1/PPM/KP-TALENTA and 45/UN5.2.3.1/PPM/KP-DRPM/2019
Kaynakça
- Asyiah, I. N., Prihatin, J., Hastuti, A. D., Winarso, S., Widjayanthi, L., Nugroho, D., Firmansyah, K., & Pradana, A. P. (2021). Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodiversitas Journal of Biological Diversity, 22(6), 3256–3264. https://doi.org/10.13057/biodiv/d220630
- Cho, C. H., Kang, D. S., Kim, Y. J., & Whang, K. S. (2008). Morphological and phylogenetic characteristics of a nematophagous fungus, Drechslerella brochopaga Kan-23. Korean Journal of Microbiology, 44(1), 63–68.
https://agris.fao.org/agris-search/search.do?recordID=KR2009000665
- Elshafie, A. E., Al-Mueini, R., Al-Bahry, S. N., Akindi, A. Y., Mahmoud, I., & Al-Rawahi, S. H. (2006). Diversity and trapping efficiency of nematophagous fungi from Oman. Phytopathologia Mediterranea, 45(3), 266–270. https://squ.pure.elsevier.com/en/publications/diversity-and-trapping-efficiency-of-nematophagous-fungi-from-oma
- Göze Özdemir, F. G., Tosun, B., Şanlı, A. & Karadoğan, T. (2021). Türkiye’de Yetişen Bazı Apiaceae Türlerinin Uçucu Yağlarının Kök Lezyon Nematodlarına Karşı Nematisidal Aktiviteleri. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(2), 425-433. https://doi.org/10.29133/yyutbd.796093
- Güven, A. & Koç, İ. (2020). Bazı Pestisit Uygulamalarından Sonra Toprakta Hedef Olmayan Nematod, Bakteri ve Mikrofungus Popülasyonlarının Değişimi. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(2), 252-265. https://doi.org/10.29133/yyutbd.689385
- Hastuti, L. D. S., Berliani, K., Mulya, M. B., Hartanto, A., & Pahlevi, S. (2021). Genetic sequence analysis of Arthrobotrys thaumasia DS01 (Monacrosporium thaumasium): A new report from North Sumatra, Indonesia. IOP C. Ser. Earth Env., 912(1), 012104. https://doi.org/10.1088/1755-1315/912/1/012104
- Hastuti, L. D. S., & Faull, J. (2018). An investigation on Sumateran Arthrobotrys oligospora and carbofuran against root-knot nematode (Meloidogyne hapla) on tomato (Solanum lycopersicum Mill.). International Journal of Scientific & Technology Research, 7(1), 32–38. https://www.ijstr.org/paper-references.php?ref=IJSTR-1217-18361
- Hastuti, L. D. S., Nicklin, J., & Siregar, A. Z. (1970). Two Entomophagous Isolated from Sumatera Utara; Potential as Biocontrol Agent Against Nematode. Jurnal Pertanian Tropik, 3(1), 43–51. https://doi.org/10.32734/jpt.v3i1.2955
- Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9(9), 868–877. https://doi.org/10.1101/GR.9.9.868
- Istiqomah, D., & Pradana, A. P. (2017). Review: teknik pengendalian nematoda puru akar (Meloidogyne spp.) ramah lingkungan. Prosiding Seminar Nasional Pencapaian Swasembada Pangan Melalui Pertanian Berkelanjutan, 1–10. https://doi.org/10.31219/osf.io/wu42m
- Kang, H., Choi, I., Park, N., Bae, C., & Kim, D. (2019). Nematode-Trapping Fungi Showed Different Predacity among Nematode Species. Research in Plant Disease, 25(3), 149–155. https://doi.org/10.5423/RPD.2019.25.3.149
- Mendoza-de Gives, P. (2022). Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens, 11(6), 640. https://doi.org/10.3390/pathogens11060640
- Migunova, V. D., & Sasanelli, N. (2021). Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. Plants, 10(2), 389. http://dx.doi.org/10.3390/plants10020389
- Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 259, 127419. https://doi.org/10.1016/j.chemosphere.2020.127419
- Purba, R. T. T., Fauzi, F., Sari, R. W., Naibaho, D. C., Putri, Q. A., Maulana, A., Hastuti, L. D. S., & Punnapayak, H. (2022). Arthrobotrys thaumasia and Arthrobotrys musiformis as biocontrol agents against Meloidogyne hapla on tomato plant. Biodiversitas Journal of Biological Diversity, 23(7), 3659–3666. https://doi.org/10.13057/biodiv/d230743
- Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod., 80(3), 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085
- Sharma, M., Saini, I., Kaushik, P., Aldawsari, M. M., Balawi, T. al, & Alam, P. (2021). Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi J. Biol. Sci., 28(7), 3685–3691. https://doi.org/10.1016/J.SJBS.2021.05.054
- Sim, S. F., Chung, L. Y., Jonip, J., & Chai, L. K. (2019). Uptake and dissipation of carbofuran and its metabolite in Chinese kale and brinjal cultivated under humid tropic climate. Advances in Agriculture, 2019, 1-7. https://www.hindawi.com/journals/aag/2019/7937086/
- Singh, U. B., Singh, S., Khan, W., Malviya, D., Sahu, P. K., Chaurasia, R., Sharma, S. K., & Saxena, A. K. (2019). Drechslerella dactyloides and Dactylaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. Indian Phytopathology, 72(2), 309–320. https://doi.org/10.1007/s42360-019-00132-x
- Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01
- Su, H., Zhao, Y., Zhou, J., Feng, H., Jiang, D., Zhang, K. Q., & Yang, J. (2017). Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol. Rev., 92(1), 357–368. https://doi.org/10.1111/brv.12233
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol., 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120
- Tarigan, W. E. (2021). Jamur Pemerangkap Nematoda Asal Danau Toba sebagai Agen Biokontrol Hayati Meloidogyne Hapla pada Tanaman Tomat (Solanum Lycopersicum L.). https://repositori.usu.ac.id/handle/123456789/32507
- Wang, F. H., Xu, Q., Wang, B., Wang, K. Y., Xue, Y. J., Cai, B., Wang, F., Liu, Y., Cai, K., & Cao, X. (2017). Isolation, identification and characterisation of the nematophagous fungus Arthrobotrys thaumasia (Monacrosporium thaumasium) from China. Biocontrol Science and Technology, 27(3), 378–392. https://doi.org/10.1080/09583157.2017.1291908
- Winarto, W., Trizelia, T., & Yenny, L. (2019). Eksplorasi jamur antagonis terhadap nematoda bengkak akar (Meloidogyne spp.) dari rizosfer tanaman tomat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 194–198. https://doi.org/10.13057/psnmbi/m050208
- Xie, H., Aminuzzaman, F. M., Xu, L., Lai, Y., Li, F., & Liu, X. (2010). Trap induction and trapping in eight nematode-trapping fungi (Orbiliaceae) as affected by juvenile stage of Caenorhabditis elegans. Mycopathologia, 169(6), 467–473. https://doi.org/10.1007/S11046-010-9279-4
- Youssef, M. M. A., & El-Nagdi, W. M. A. (2021). New Approach for Biocontrolling Root-Knot Nematode, Meloidogyne incognita on Cowpea by Commercial Fresh Oyster Mushroom (Pleurotus ostreatus). Jordan Journal of Biological Sciences, 14(01), 173–177. https://doi.org/10.54319/jjbs/140122
- Yu, Z., Mo, M., Zhang, Y., & Zhang, K. Q. (2014). Taxonomy of Nematode-Trapping Fungi from Orbiliaceae, Ascomycota. In K.-Q. Zhang & K. D. Hyde (Eds.), Nematode-Trapping Fungi (Vol. 23, pp. 41–210). Springer. https://doi.org/10.1007/978-94-017-8730-7_3
- Yusuf, C. (2019). Berkenalan dengan Nematode Trapping Fungi: Alternatif Biokontrol Nematoda. Peneliti PPBBI, 7(1), 13–15.
- Zhang, Y., Li, S., Li, H., Wang, R., Zhang, K. Q., & Xu, J. (2020). Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. Journal of Fungi, 6(4), 206. https://doi.org/10.3390/jof6040206
- Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol., 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478