Research Article
BibTex RIS Cite

Microalga Chlorella sorokiniana Response to Salinity: Effects on Cell Density, Size, and Pigment Accumulation

Year 2025, Volume: 35 Issue: 4, 587 - 602, 25.12.2025
https://doi.org/10.29133/yyutbd.1666510

Abstract

Microalgae, such as those from the genus Chlorella, produce biochemical compositions such as lipids, protein, and pigment. This research investigated the effects of different salinity levels in a nutrient medium on the growth and pigment synthesis of Chlorella sorokiniana. Microalga C. sorokiniana was cultured and grown in 500 mL glass bottle with varying concentrations of sodium chloride (10,15, 20, and 25 g L-1 NaCl) in a BG-11 medium, starting at an initial cell density of 2.68 x 105 cell mL-1. The cultures were maintained at 20 ± 1 °C, under continuous aeration, with a light intensity of 200 µmol photons m⁻² s⁻¹, a 24 h light photoperiod, and pH 7.5 ± 0.2. The results revealed that the optimal salinity concentration for enhancing the cell density, and the specific growth was 10 g L-1, demonstrating the highest cell density, exceeding the control group by 1.27-fold cell mL-1 at day 15 of the culture period. Additionally, the specific growth rate (SGR) was significantly higher in the 10 g L-1 of salinity concentration, achieving (0.05 ±0.14 day-1) as early as day 6 of the culture period compared to the other experimental groups. Cell size also increased significantly with 20 g L-1 of salinity concentration (49.91 ± 2.39 µm). Regarding the pigment accumulation, total carotenoid levels and chlorophyll-a, the elevated salinity concentration of 20 g L-1 suppresses chlorophyll-a accumulation and exhibited a reduction in total carotenoid pigment accumulation. Thus, these findings suggest that lower salinity levels (10 g L⁻¹ NaCl) can effectively enhance the growth of Chlorella sorokiniana, while higher salinity levels (20 g L⁻¹ NaCl) tend to suppress pigment production, particularly chlorophyll-a and total carotenoids accumulation.

References

  • Abreu, A. P., Martins, R., & Nunes, J. (2023). Emerging applications of Chlorella sp. and spirulina (Arthrospira) sp. Bioengineering, 10(8), 955.
  • Ahmad, A. L., Yasin, N. M., Derek, C. J. C., & Lim, J. K. (2013). Microfiltration of Chlorella sp.: Influence of material and membrane pore size. Membrane Water Treatment, 4(2), 143-155.
  • Ahmad, A. L., Yasin, N. M., Derek, C. J. C., & Lim, J. K. (2014). Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. Environmental Technology, 35(17), 2244-2253.
  • Ali, H. E. A., El-Fayoumy, E. A., Rasmy, W. E., Soliman, R. M., & Abdullah, M. A. (2021). Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. Journal of Applied Phycology, 33, 227-239.
  • Allakhverdiev, S. I., Kreslavski, V. D., Zharmukhamedov, S. K., Voloshin, R. A., Korol’Kova, D. V., Tomo, T., & Shen, J. R. (2016). Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Moscow), 81, 201-212.
  • Almutairi, A. W., El-Sayed, A. E. K. B., & Reda, M. M. (2021). Evaluation of high salinity adaptation for lipid bio-accumulation in the green microalga Chlorella vulgaris. Saudi Journal of Biological Sciences, 28(7), 3981-3988.
  • Ampofo, J., & Abbey, L. (2022). Microalgae: Bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods, 11(12), 1744.
  • Annamalai, J., Shanmugam, J., & Nallamuthu, T. (2016). Salt stress enhancing the production of Phytochemicals in Chlorella vulgaris and Chlamydomonas reinhardtii. J Algal Biomass Util, 7(1), 37-44.
  • Banskota, A. H., Stefanova, R., Hui, J. P., Bermarija, T., Stemmler, K., McGinn, P. J., & O’Leary, S. J. (2024). Comprehensive Analysis of Biomass from Chlorella sorokiniana Cultivated with Industrial Flue Gas as the Carbon Source. Molecules, 29(14), 3368.
  • Bianchini, C. B., Ramos-Souza, C., Schappo, F. B., Farina, M., De Rosso, V. V., & Nunes, I. L. (2024). Ionic liquid and ultrasound as a fast and innovative combination for improved extraction of Chlorella sorokiniana-derived carotenoids. Algal Research, 82, 103650.
  • Bratosin, B. C., Darjan, S., & Vodnar, D. C. (2021). Single cell protein: A potential substitute in human and animal nutrition. Sustainability, 13(16), 9284.
  • Cezare-Gomes, E. A., Mejia-da-Silva, L. D. C., Pérez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., & de Carvalho, J. C. M. (2019). Potential of microalgae carotenoids for industrial application. Applied biochemistry and Biotechnology, 188, 602-634.
  • Chadha, Y., Khurana, A., & Schmoller, K. M. (2024). Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiological Reviews, 104(4), 1679-1717.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
  • Church, J., Hwang, J. H., Kim, K. T., McLean, R., Oh, Y. K., Nam, B., ... & Lee, W. H. (2017). Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology, 243, 147-153.
  • Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.
  • Da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20.
  • Day, A. G., Brinkmann, D., Franklin, S., Espina, K., Rudenko, G., Roberts, A., & Howse, K. S. (2009). Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regulatory Toxicology and Pharmacology, 55(2), 166-180.
  • Durmaz, Y., & Erbil, G. Ç. (2020). Comparison of industrial-scale tubular photobioreactor to FRP (fiberglass reinforced plastic) panel photobioreactor on outdoor culture of Nannochloropsis oculata in the marine hatchery. Ege Journal of Fisheries & Aquatic Sciences (EgeJFAS)/Su Ürünleri Dergisi, 37(3), 303-308.
  • Dusenbery, D. B. (2011). Living at micro scale: the unexpected physics of being small. Harvard University Press.
  • Ebenezer, V., Medlin, L. K., & Ki, J. S. (2012). Molecular detection, quantification, and diversity evaluation of microalgae. Marine Biotechnology, 14, 129-142.
  • Ebrahimi, E., & Salarzadeh, A. (2016). The effect of temperature and salinity on the growth of Skeletonema costatum and Chlorella capsulata in vitro. International Journal of Life Sciences, 10(1), 40-44.
  • Elloumi, W., Jebali, A., Maalej, A., Chamkha, M., & Sayadi, S. (2020). Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules, 10(11), 1515.
  • Erbil, G. Ç., Durmaz, Y., & Mahmut, E. L. P. (2021). Indoor Growth Performance of Chlorella sp. Production at Tubular Photobioreactor. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 7(2), 90-95.
  • Erbil, G. Ç., Elp, M., & Durmaz, Y. (2022). Phycoerythrin accumulation of Porphyridium cruentum culture at indoor tubular photobioreactor. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(1), 81-88.
  • Ferruzzi, M. G., Böhm, V., Courtney, P. D., & Schwartz, S. J. (2002). Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. Journal of Food Science, 67(7), 2589-2595.
  • Gu, N., Lin, Q., Li, G., Tan, Y., Huang, L. and Lin, J. 2012. Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Engineering in Life Sciences, 12(6), 631-637.
  • Guiry, M. D., Guiry, G. M., Morrison, L., Rindi, F., Miranda, S. V., Mathieson, A. C., ... & Garbary, D. J. (2014). AlgaeBase: an on-line resource for algae. Cryptogamie, Algologie, 35(2), 105-115.
  • Hairol, M., Nian, C., Imlani, A., Tikmasan, J., & Sarri, J. (2022). Effects of Crab Shellmeal Inclusions to Fishmeal Replacement on the Survival, Growth, and Feed Utilization of Mangrove Crab Scylla serrata (Forsskal 1775). Yuzuncu Yıl University Journal of Agricultural Sciences, 32(4), 714-726.
  • Jalilul, J. N. M., Jeva, M. A., Sarri, J. H., Robles, R. J. F., & Jamil, W. M. (2025). Evaluation of AMPEP as a natural biostimulant for enhancing biomass and pigment yield in Chlorella sorokiniana. Jurnal Ilmiah Perikanan dan Kelautan, 17(3):724-735
  • Jehlík, T., Kodrík, D., Krištůfek, V., Koubová, J., Sábová, M., Danihlík, J., ... & Čapková Frydrychová, R. (2019). Effects of Chlorella sp. on biological characteristics of the honeybee Apis mellifera. Apidologie, 50, 564-577.
  • Ji, X., Cheng, J., Gong, D., Zhao, X., Qi, Y., Su, Y., & Ma, W. (2018). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Science of The Total Environment, 633, 593-599.
  • Jiménez-Llanos, J., Ramírez-Carmona, M., Rendón-Castrillón, L., & Ocampo-López, C. (2020). Sustainable biohydrogen production by Chlorella sp. microalgae: A review. International Journal of Hydrogen Energy, 45(15), 8310-8328.
  • Kebeish, R., El-Ayouty, Y., & Hussein, A. (2014). Effect of salinity on biochemical traits and photosynthesis-related gene transcription in Chlorella vulgaris. Egyptian Journal of Botany, 54(2), 281-294.
  • Kholssi, R., Lougraimzi, H., & Moreno-Garrido, I. (2023). Influence of salinity and temperature on the growth, productivity, photosynthetic activity and intracellular ROS of two marine microalgae and cyanobacteria. Marine Environmental Research, 186, 105932.
  • Kissae, A. N. H., Sarri, J. H., Amlani, M. Q., Jumsali, M. H., Jamil, W. M., Imbuk, E. S., Jalilul J. N. M., Jeva M. A., & Hairol, M. D. (2025). Incorporation of salinity and AMPEP concentration in nutrient medium on dry weight, cell density, growth response, and pigment accumulation of Nannochloropsis sp. culture. Aquaculture, Aquarium, Conservation & Legislation, 18(3), 1593-1604.
  • Koç, N., Barbaros, S., Çelik, E., Uğuz, S., Şimşek, E., & Yaslıoglu, E. (2024). Removal of Nitrogen and Phosphorus from Liquid Dairy Manure using Microalgae. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(4), 571-583.
  • Koch, A. L. (2007). Growth measurement. Methods for General and Molecular Microbiology, 172-199.
  • Kumar, K., & Das, D. (2012). Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresource Technology, 116, 307-313.
  • Kumar, R., Hegde, A. S., Sharma, K., Parmar, P., & Srivatsan, V. (2022). Microalgae as a sustainable source of edible proteins and bioactive peptides–Current trends and future prospects. Food Research International, 157, 111338.
  • Lizzul, A. M., Lekuona-Amundarain, A., Purton, S., & Campos, L. C. (2018). Characterization of Chlorella sorokiniana, UTEX 1230. Biology, 7(2), 25.
  • Lourenço-Lopes, C., Carreira-Casais, A., Fraga-Corral, M., Garcia-Oliveira, P., Soria, A., Jarboui, A., ... & Prieto, M. A. (2021). Carotenoids as natural colorful additives for the food industry. In Natural Food Additives. IntechOpen.
  • Lucakova, S., Branyikova, I., & Hayes, M. (2022). Microalgal proteins and bioactives for food, feed, and other applications. Applied Sciences, 12(9), 4402.
  • Macıas-Sánchez, M.D., Mantell, C., Rodrıguez, M., De La Ossa, E.M., Lubián, L.M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251.
  • Martins, T., Barros, A. N., Rosa, E., & Antunes, L. (2023). Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules, 28(14), 5344.
  • Matsukawa, R., Hotta, M., Masuda, Y., Chihara, M., & Karube, I. (2000). Antioxidants from carbon dioxide fixing Chlorella sorokiniana. Journal of Applied Phycology, 12, 263-267.
  • Milo, R., & Phillips, R. (2015). Cell biology by the numbers. Garland Science.
  • Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17(11), 640.
  • Ogbonna, J. C., Nweze, N. O., & Ogbonna, C. N. (2021). Effects of light on cell growth, chlorophyll, and carotenoid contents of Chlorella sorokiniana and Ankistrodesmus falcatus in poultry dropping medium. J Appl Biol Biotechnol, 9, 157-163.
  • Onyeaka, H., Anumudu, C. K., Okpe, C., Okafor, A., Ihenetu, F., Miri, T., ... & Anyogu, A. (2022). Single cell protein for foods and feeds: A review of trends. The Open Microbiology Journal, 16(1), e187428582206160.
  • Pandit, P. R., Fulekar, M. H., & Karuna, M. S. L. (2017). Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science and Pollution Research, 24, 13437-13451.
  • Pareek, S., Sagar, N. A., Sharma, S., Kumar, V., Agarwal, T., González‐Aguilar, G. A., & Yahia, E. M. (2017). Chlorophylls: Chemistry and biological functions. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition, 269-284.
  • Ren, Y., Sun, H., Deng, J., Huang, J., & Chen, F. (2021). Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs, 19(12), 713.
  • Richmond, A. (2013). Biological principles of mass cultivation of photoautotrophic microalgae. Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 169-204.
  • Richmond, A. (Ed.). (2004). Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Vol. 577). Oxford: Blackwell science.
  • Salama, E. S., Kim, H. C., Abou-Shanab, R. A., Ji, M. K., Oh, Y. K., Kim, S. H., & Jeon, B. H. (2013). Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and Biosystems Engineering, 36, 827-833.
  • Sanuddin, N. B., Hairol, M. D., Nian, C. T., Robles, R. J. F., Illud, H. A., Muyong, J. S., Ebbah, J. H., & Sarri, J. H. (2023). Impact of different nutrient enrichment concentrations on the growth of microalga Nannochloropsis sp. (Monodopsidaceae) Culture. Acta Natura et Scientia, 4(1), 87-93.
  • Sarri, J. H., & Elp, M. (2024). Optimization of iron, phosphate, and salinity in nutrient medium using response surface methodology for enhancing biochemical composition in Chlorella sp. culture. Algal Research, 84, 103747.
  • Sarri, J. H., Erbil, G. Ç. & Elp, M. (2024b). Impact of Acadian Marine Plant Extract Powder (AMPEP) concentration in nutrient medium on the growth and lipid accumulation of Chlorella sp. culture. Journal of Agricultural Sciences, 30(4), 658-667.
  • Sarri, J. H., Erbil, G. Ç., Elp, M., & Kadak, A. E. (2024c). Acceptability of different concentrations of Chlorella sp. in Filipino Delicacy Puto as coloring agent. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(1), 62-73.
  • Sarri, J. H., Ibno, D. C. V., Hassan, R. K., & Hairol, M. D. (2024a). Investigation of the effect of AMPEP concentration in nutrient medium on the cell density, growth response, and pigment accumulation of Nannochloropsis sp. culture. AACL Bioflux, 17(6), 2886-2898.
  • Sarri, J. H., Imlan, K. H., Ahajan, N. A., Hairol, M. D., Kissae, A. N. H., Yangson, N. A. T., Robles, R. J. F., & Talaid, E. M. (2025). Application of marine plant extract powder (AMPEP) as a nutrient supplement for optimizing Nannochloropsis sp. cultivation. Israeli Journal of Aquaculture-Bamidgeh, 77(4), 23-35.
  • Shetty, P., Gitau, M. M., & Maróti, G. (2019). Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells, 8(12), 1657.
  • Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1. 1 under optimized culture conditions. PloS One, 14(9), e0221930.
  • Singh, J., & Saxena, R. C. (2015). An introduction to microalgae: diversity and significance. In Handbook of Marine Microalgae (pp. 11-24). Academic Press.
  • Singh, R. P., Yadav, P., Sharma, H., Kumar, A., Hashem, A., Abd_Allah, E. F., & Gupta, R. K. (2024). Unlocking the adaptation mechanisms of the oleaginous microalga Scenedesmus sp. BHU1 under elevated salt stress: a physiochemical, lipidomics and transcriptomics approach. Frontiers in Microbiology, 15, 1475410.
  • Sonmez, M. E., Altinsoy, B., Ozturk, B. Y., Gumus, N. E., & Eczacioglu, N. (2023). Deep learning-based classification of microalgae using light and scanning electron microscopy images. Micron, 172, 103506.
  • Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11, 1-16.
  • Tunio, A. A., Naqvi, S. H., Rehman, T., Bhutto, M. A., & Mugheri, M. H. (2022). Determination of antioxidant, antimicrobial properties with evaluation of biochemicals and phytochemicals present in Oscillatoria limosa of District Jamshoro, Pakistan. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(3), 538-547.
  • Verdelho Vieira, V., Cadoret, J. P., Acien, F. G., & Benemann, J. (2022). Clarification of most relevant concepts related to the microalgae production sector. Processes, 10(1), 175.
  • Wang, T., Ge, H., Liu, T., Tian, X., Wang, Z., Guo, M., ... & Zhuang, Y. (2016). Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. Journal of Biotechnology, 228, 18-27.
  • Wang, Y., Castillo-Keller, M., Eustance, E., & Sommerfeld, M. (2017). Early detection and quantification of zooplankton grazers in algal cultures by FlowCAM. Algal Research, 21, 98-102.
  • Wu, H. L., Hseu, R. S., & Lin, L. P. (2001). Identification of Chlorella spp. isolates using ribosomal DNA sequences. Botanical Bulletin of Academia Sinica, 42.
  • Yılmaz Öztürk, B., Dağlıoğlu, Y., Tezcan Ün, Ü., & Dağ, İ. (2024). Phycoremediation potential with ultrastructural and biochemical response of Kirchneriella lunaris to metribuzin. International Journal of Environmental Science and Technology, 22, 8195–8210.
  • Zhang, J., Yang, H., Sun, Y., Yan, B., Chen, W., & Fan, D. (2024). The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Comprehensive Reviews in Food Science and Food Safety, 23(4), e13418.
  • Zou, N., and Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). Journal of Applied Phycology, 12(3-5), 349-354. doi:https://doi.org/10.1023/a:1008151004317
  • Zulfiqar, S., Sharif, S., Saeed, M., & Tahir, A. (2021). Role of carotenoids in photosynthesis. Carotenoids: Structure and Function in The Human Body, 147-187.
There are 77 citations in total.

Details

Primary Language English
Subjects Aquaculture and Fisheries (Other)
Journal Section Research Article
Authors

Marcelita Jeva This is me 0009-0002-4314-0591

J-nadine Jalilul 0009-0008-7388-1511

Jurmin Sarri 0000-0002-4798-0566

Melodina Hairol This is me 0000-0002-2800-667X

Submission Date March 27, 2025
Acceptance Date September 10, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 35 Issue: 4

Cite

APA Jeva, M., Jalilul, J.- nadine, Sarri, J., Hairol, M. (2025). Microalga Chlorella sorokiniana Response to Salinity: Effects on Cell Density, Size, and Pigment Accumulation. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(4), 587-602. https://doi.org/10.29133/yyutbd.1666510
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.