Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 4, 758 - 775, 25.12.2025

Abstract

References

  • Acibuca, V., & Kaya, A. (2024). Environmental awareness and attitudes of university students: The case of Türkiye. ISPEC Journal of Agricultural Sciences, 8(1), 237–246. https://doi.org/10.5281/zenodo.10852912.
  • AlKhalifa, J., Nawaz, N., & Sawaya, R. (2025). Motivational factors and employee performance: A comprehensive analysis. In A. Hamdan (Ed.), Achieving sustainable business through AI, technology education and computer science. Studies in Big Data, 158, Springer, Cham. https://doi.org/10.1007/978-3-031-70855-8_53.
  • Alzate, M., Arce-Urriza, M., ve Cebollada, J. (2022). Mining the text of online consumer reviews to analyze brand image and brand positioning. Journal of Retailing and Consumer Services, 67, 102989. https://doi.org/10.1016/j.jretconser.2022.102989.
  • Atan, S. (2020). Metin Madenciliği: İmkânlar, Yöntemler Ve Kisitlar. Mehmet Akif Ersoy University Journal of Social Sciences Institute, 31, 220-239. https://doi.org/10.20875/makusobed.476524.
  • Bakker, A. B., & Demerouti, E. (2017). Job demands–resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273–285. https://doi.org/10.1037/ocp0000056.
  • Basha, M. J., Vijayakumar, S., Jayashankari, J., Alawadi, A. H., & Durdona, P. (2023). Advancements in natural language processing for text understanding. In ICONECT-2023, E3S Web of Conferences, 399, 04031. https://doi.org/10.1051/e3sconf/202339904031.
  • Çakmakçı, Y. (2020). Determination of consumer perception on eco-friendly concepts used in the marketing of various food products (The case of Tekirdağ/Süleymanpaşa). (Master’s thesis), Tekirdağ Namık Kemal University, Institute of Social Sciences, Tekirdağ, Türkiye.
  • Călin, A. D., & Coroiu, A. M. (2024). What is the attitude of romanian smallholders towards a ground mole infestation? A study using topic modelling and sentiment analysis on social media and blog discussions. Animals, 14(24), 3611. https://doi.org/10.3390/ani14243611.
  • Çebi, K., Özyürek, S., & Türkyılmaz, D. (2018). The factors affecting consumer choices in dairy products: the case of Erzincan. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 70-77. https://doi.org/10.29133/yyutbd.348206.
  • Chen, C. W. (2023). A Feasibility Discussion: Is ML suitable for predicting sustainable patterns in consumer product preferences. Sustainability, 15(5), 3983. https://doi.org/10.3390/su15053983.
  • Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
  • Cubukcu Cerası, C., Balcıoğlu, Y. S., Huseynov, F., & Kılıç, A. (2024). A comprehensive text mining application to understand social media's impact on consumer perception of green consumption. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 28-37.
  • De, S., Dey, S., Bhatia, S., & Bhattacharyya, S. (2022). Chapter 1 - An introduction to data mining in social networks. In S. De, S. Dey, S. Bhattacharyya, & S. Bhatia (Eds.), Advanced data mining tools and methods for social computing (pp. 1–25). Academic Press. https://doi.org/10.1016/B978-0-32-385708-6.00008-4
  • Delanerolle, G., Bouchareb, Y., Shetty, S., Cavalini, H., & Phiri, P. (2025). A pilot study using natural language processing to explore textual electronic mental healthcare data. Informatics, 12(1), 28. https://doi.org/10.3390/informatics12010028.
  • Dinca, V. M., Trocinescu, B., Stamule, S., Bunea, M. & Dinu, V. (2024). Opportunities and challenges for managers within the East-European agriculture sector: Case study on Romania. E&M Economics and Management, 27(4), 121–134. https://doi.org/10.15240/tul/001/2024-4-008.
  • Drury, B., Almeida, J. J. (2011). Identification of fine grained feature based event and sentiment phrases from business news stories. In Proceedings of the Association for Computing Machinery. Association for Computing Machinery. https://doi.org/10.1145/1988688.1988720.
  • Drury, B., & Roche, M. (2019). A survey of the applications of text mining for agriculture. Computers and Electronics in Agriculture, 163, 104864. https://doi.org/10.1016/j.compag.2019.104864.
  • Dumitru, E. A., Sterie, C. M., Rodino, S., & Butu, M. (2023). Consumer preferences in the purchase of agri-food products: Implications for the development of family farms. Agriculture, 13(8), 1478. https://doi.org/10.3390/agriculture13081478.
  • Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1–54. https://doi.org/10.18637/jss.v025.i05.
  • Fellows, I. (2018). wordcloud: Functionality to create pretty word clouds, visualize differences and similarity between documents, and avoid over-plotting in scatter plots with text (R package version 2.6). CRAN. http://blog.fellstat.com/?cat=11.
  • Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine Publishing Company. http://www.sxf.uevora.pt/wp-content/uploads/2013/03/Glaser_1967.pdf.
  • Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297. https://doi.org/10.1093/pan/mps028.
  • Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough?: An experiment with data saturation and variability. Field Methods, 18(1), 59–82. https://doi.org/10.1177/1525822X05279903.
  • Gutiérrez Domínguez, A., Roig-Tierno, N., Chaparro-Banegas, N., & García-Álvarez-Coque, J.-M. (2024). Natural language processing of social network data for the evaluation of agricultural and rural policies. Journal of Rural Studies, 109, 103341. https://doi.org/10.1016/j.jrurstud.2024.103341.
  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: a k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
  • Hegde, G., Hulipalled, V. R., & Simha, J. B. (2021). Price prediction of agriculture commodities using machine learning and NLP. In 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) 1–6. IEEE. https://doi.org/10.1109/ICSTCEE54422.2021.9708582.
  • Helvacı, N. (2024). Socio-economic analysis of the horse racing industry in Turkey (Master’s thesis). Tekirdağ Namık Kemal University, Institute of Social Sciences, Tekirdağ, Türkiye.
  • Hou, Y., & Huang, J. (2025). Natural language processing for social science research: A comprehensive review. Chinese Journal of Sociology, 11(1), 121–157. https://doi.org/10.1177/2057150X241306780.
  • Hsu, S., Gligor, D., Garg, V., Gölgeci, I., & Choi, R. J. (2025). Exploring supply chain capabilities as drivers for willingness to adopt blockchain technology using a technology–organization–environment (TOE) framework. Production Planning & Control, 36(16), 2382–2398. https://doi.org/10.1080/09537287.2025.2533186.
  • Huang, Y., Wang, X., Wang, R., & Min, J. (2022). Analysis and recognition of food safety problems in online ordering based on reviews text mining. Wireless Communications and Mobile Computing, 2022, 4209732. https://doi.org/10.1155/2022/4209732.
  • Hutto, C. J., & Gilbert, E. E. (2014). Vader: a parsimonious rule-based model for sentiment analysis of social media text [Paper presentation]. Eighth International AAAI Conference on Weblogs and Social Media (ICWSM-14).
  • Iftikhar, A., Purvis, L., & Giannoccaro, I. (2021). A meta-analytical review of antecedents and outcomes of firm resilience. Journal of Business Research, 135, 408–425. https://doi.org/10.1016/j.jbusres.2021.06.048.
  • İnan, R. Assessment of Consumers of Organic Food Purchase Behavior and Attitudes. Journal of Tourism and Gastronomy Studies, 9(1), 220-235. https://doi.org/10.21325/JOTAGS.2021.786
  • ISSA, F. (2015). Methods of Data Collection in Agricultural Extension Research. AESON.
  • Javaid, M., Haleem, A., Singh, R. P., & Sinha, A. K. (2024). Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), 100083. https://doi.org/10.1016/j.grets.2024.100083
  • Jiang, J. (2012). Information Extraction from Text. In: Aggarwal, C., Zhai, C. (eds) Mining Text Data. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3223-4_2
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Kadirhanoğulları, İ. H., Karadaş, K., Özger, Ö., Konu, M. (2021). Determination of Organic Product Consumer Preferences with Decision Tree Algorithms: Sample of Iğdır Province. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(1), 188-196. https://doi.org/10.29133/yyutbd.799465
  • Kaçmaz, K. S., Aşkan, E., & Topcu, Y. (2023). Consumer perception and purchase attitude towards genetically modified foods during the COVID-19 pandemic: The case of Erzurum, Türkiye. Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 543–555. https://doi.org/10.29133/yyutbd.1319800
  • Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7-15. https://doi.org/10.1016/0020-0190(89)90102-6
  • Kao, A. ve Poteet, S. (2005). Text mining and natural language processing: Introduction for the special issue. SIGKDD Explorations Newsletter, 7(1), 1–2. https://doi.org/10.1145/1089815.1089816.
  • Karami, A., Bennett, L. S., & He, X. (2018). Mining public opinion about economic issues: Twitter and the U.S. presidential election. International Journal of Strategic Decision Sciences, 9(1), 11. https://doi.org/10.4018/IJSDS.2018010102.
  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607-610. https://doi.org/10.1177/001316447003000308.
  • Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). Big data. The parable of Google Flu: traps in big data analysis. Science (New York, N.Y.), 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506.
  • Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human-Centered Informatics, 5(1), 1-167.
  • Loria, S. (2018). Textblob: Simplified text processing. https://textblob.readthedocs.io/en/dev/. Access date: 02.03.2025.
  • Maithili, K., Naveen Raja, S. M., Kumar, R. P., & Koli, S. (2023). A survey on NLP (natural language processing) and transactions on NNL (neural networks and learning systems). E3S Web of Conferences, 430, 01148. https://doi.org/10.1051/e3sconf/202343001148.
  • Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample Size in Qualitative Interview Studies: Guided by Information Power. Qualitative Health Research, 26(13), 1753–1760. https://doi.org/10.1177/1049732315617444.
  • Moldovan, M.-G., Dabija, D.-C., Stanca, L., & Pocol, C. B. (2024). A qualitative study on the consumer behaviour related to food waste: romanian perspectives through word cloud and sentiment analysis. Sustainability, 16(10), 4193. https://doi.org/10.3390/su16104193.
  • Nyariki, D.M. (2009). Household data collection for socio-economic research in agriculture: Approaches and challenges in developing countries. Journal of Social Sciences, 19, 91 - 99.
  • OECD. (2023). AI in Policy Evaluation: Governing with Artificial Intelligence. OECD Publishing. Paris, https://doi.org/10.1787/795de142-en.
  • Paleologo, M., Castellini, G., Bosio, A. C., Fontana, M., & Graffigna, G. (2024). Exploring social media to understand perceptions of milk quality among farmers, processors, and citizen-consumers. Foods, 13(16), 2526. https://doi.org/10.3390/foods13162526.
  • Parashar, S., Singh, S., & Sood, G. (2023). Examining the role of health consciousness, environmental awareness and intention on purchase of organic food: A moderated model of attitude. Journal of Cleaner Production, 386, 135553. https://doi.org/10.1016/j.jclepro.2022.135553.
  • Pedersen, T. L. (2023). ggraph: an implementation of grammar of graphics for graphs and networks. R package version 2.1.1. https://CRAN.R-project.org/packag e=ggraph.
  • Penone, C., Giampietri, E. & Trestini, S. (2024). Exploring farmers’ intention to adopt marketing contracts: empirical insights using the TOE framework. Agric Econ 12, 39 (2024). https://doi.org/10.1186/s40100-024-00333-7.
  • Prasad, J. R., Prasad, R. S., & Kulkarni, U. V. (2008). A decision support system for agriculture using natural language processing (adss). In Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 1-13.
  • R Core Team. (2024). R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  • Rashid, A. B., & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277.
  • Robinson, D. & Silge, J. (2022). widyr: Widen, process, then re-tidy data (R package version 0.1.5) Computer software. CRAN. https://doi.org/10.32614/CRAN.package.widyr.
  • Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
  • Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining techniques for extracting information from research articles. In K. Shaalan, A. Hassanien, & F. Tolba (Eds.), Intelligent Natural Language Processing: Trends and Applications. Studies in Computational Intelligence, Springer, 740, 235-250).. https://doi.org/10.1007/978-3-319-67056-0_18.
  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513-523.
  • Schnieder, M., Behbehani, R., Canhoto, A. I., Beltagui, A., Kumar, N., & McCloskey, J. (2024). Asking vs. listening: A comparative analysis of focus groups and text mining customer online reviews (Version 1). University of Sussex. https://hdl.handle.net/10779/uos.28174889.v1
  • Siegrist, J. (2012). Effort-reward imbalance at work: theory, measurement and evidence. Universitätsklinikum Düsseldorf, Institut für Medizinische Soziologie. https://www.uniklinik-duesseldorf.de/fileadmin/Fuer-Patienten-und-Besucher/Kliniken-Zentren-Institute/Institute/Institut_fuer_Medizinische_Soziologie/Dateien/ERI/ERI-Website.pdf.
  • Silge, J., & Robinson, D. (2016). Tidytext: Text mining and analysis using tidy data principles in R. Journal of Open Source Software, 1(3), 37. https://doi.org/10.21105/joss.00037.
  • Soleimanian Gharehchopogh, F., & Abbasi Khalifelu, Z. (2011). Evaluation of intelligent tutoring systems: Instruction and education approach. International Journal of Innovation, Management and Technology, 2(5), 425–429.
  • Sørensen, M. P., Ravn, T., Bendtsen, A.-K., Reyes Elizondo, A., Kaltenbrunner, W., Ščepanović, R., Marušić, A., Kavouras, P., Labib, K., Tijdink, J. K., Veltri, G. A., & Bergmans, J. (2020). Report on the results of the focus group interviews (SOPs4RI Deliverable D5.2, Version 1.0). SOPs4RI Consortium. https://www.sops4ri.eu/wp-content/uploads/D5.2_Report-on-the-Results-of-the-Focus-Group-Interviews.pdf.
  • Stryker, C., & Holdsworth, J. (2025). Natural language processing: the future of AI. IBM. https://www.ibm.com/think/topics/natural-language-processing. Access date: 02.04.2025.
  • Surjandari, I., Naffisah, M. S. N., & Prawiradinata, M. I. (2015). Text mining of twitter data for public sentiment analysis of staple foods price changes. Journal of Industrial and Intelligent Information, 3(3), 253-257.
  • Taysi, M. R., İnci, H., & Karakaya, E. (2021). Determining organic product consumption preferences in terms of benefit, attitude and purchase intention. ISPEC Journal of Agricultural Sciences, 5(2), 463–475. https://doi.org/10.46291/ISPECJASvol5iss2pp463-475
  • Topaçan, Ü. (2016). Sentiment analysis in social media posts: A study on machine learning approaches (Doctoral dissertation). Marmara University, Institute of Social Sciences, Istanbul, Türkiye.
  • Turgut, H., Tokmak, İ., & Gucel, C. (2012). The effect of employees’ organizational justice perceptions on their organizational commitment: a university sample. International Journal of Business and Management Studies, 4(1), 21-30.
  • Viégas, F. B., & Wattenberg, M. (2008). Tag clouds and the case for vernacular visualization. Interactions, 15(4), 49-52.
  • Vijayarani, S., & Janani, R. (2016). Text mining: Open source tokenization tools – An analysis. Advanced Computational Intelligence: An International Journal (ACII), 3(1), 37. https://doi.org/10.5121/acii.2016.3104.
  • Wang, Y., Ahmed, S., & Bee, A. (2023). Selective avoidance as a cognitive response: Examining the political use of social media and surveillance anxiety in avoidance behaviours. Behaviour & Information Technology, 43, 1–15. https://doi.org/10.1080/0144929X.2023.2182609.
  • Whisner, C. M., Wang, H., Felix, S., & Maciejewski, R. (2016). Mining the twitter-sphere for consumer attitudes towards dairy. The FASEB Journal, 30(1 Supplement), 897.2. https://doi.org/10.1096/fasebj.30.1_supplement.897.2.
  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
  • Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., & Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686.
  • Ylilehto, M., Liljamo, P., Raatiniemi, L., & Kanste, O. (2021). Leader's perceptions of the impact of increasing use of e-health services on assessing the need for treatment: qualitative study on secondary care emergency department. Finnish Journal of eHealth and eWelfare, 13(1), 32-48. https://doi.org/10.23996/fjhw.96161.
  • Yüksel, A. S., & Tan, F. G. (2018). Knowledge discovery in social networks using text mining techniques. Journal of Engineering Sciences and Design, 6(2), 324-333. https://doi.org/10.21923/jesd.384791.
  • Yüzbaşıoğlu, R. (2021). Consumer preferences for cooperative branded products: the case of Tokat province central district. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(3), 477-484. https://doi.org/10.24180/ijaws.943111.
  • Yüzbaşıoğlu, R., & Kaplan, E. (2019). Determination of environmental awareness in purchasing behavior of individuals (The Case of Tokat Central Country). Rewieved Journal of Urban Culture and Management, 12(38), 214-224.

New Approaches for Food Marketing Strategies and Sectoral Policies: Text Mining and NLP-Based Sentiment Analysis

Year 2025, Volume: 35 Issue: 4, 758 - 775, 25.12.2025

Abstract

This study investigates the application of Natural Language Processing (NLP) and text mining techniques to enhance the understanding of consumer behavior and sectoral perspectives within the food marketing and horse racing industries. Two primary datasets were utilized: a face-to-face survey conducted with 171 consumers in Tekirdağ, Türkiye, and in-depth interviews with 20 employees from the Turkish horse racing sector. Survey responses were analyzed using R, incorporating text mining methods such as word frequency analysis, bigram identification, chi-square testing, and network analysis. The findings revealed statistically significant associations between purchased foods and specific demographic variables. Notably, household size was significantly associated with cheese consumption (χ²(1) = 6.453, p = 0.011), and gender was significantly related to vegetable consumption (χ²(1) = 4.168, p = 0.041). Additionally, borderline associations were identified between gender and fruit (p = 0.061) and egg (p = 0.080) consumption, as well as between the number of household workers and yoghurt consumption (p = 0.054). Network analysis highlighted the central role of items such as vegetables, fruit, milk, and cheese across various labeling categories, including “organic,” “natural,” and “cooperative.” Interview data were processed in Python using sentiment analysis and clustering techniques. Two primary sentiment-based clusters emerged: one reflecting positive perceptions related to horse care and professional identity, and another indicating dissatisfaction with social life and work-life balance. Overall, the study emphasizes the importance of natural language processing (NLP) and text mining in producing reliable information to influence marketing strategies and policy making in agricultural economics and social science fields.

Ethical Statement

Ethical approval is not required for consumer data used in this study because “Survey data collected before 2020”. Ethical approval for this study was obtained from Tekirdağ Namık Kemal University Scientific Research and Publication Ethics Board, Social and Human Sciences Scientific Research and Publication Ethics Committee (Approval No: T2024-2049, Date: 10.06.2024) for the data collection through in-depth interviews.

Supporting Institution

No external financing support was received for this research.

Thanks

We sincerely thank all survey respondents and in-depth interview participants for their valuable time and contributions to our study.

References

  • Acibuca, V., & Kaya, A. (2024). Environmental awareness and attitudes of university students: The case of Türkiye. ISPEC Journal of Agricultural Sciences, 8(1), 237–246. https://doi.org/10.5281/zenodo.10852912.
  • AlKhalifa, J., Nawaz, N., & Sawaya, R. (2025). Motivational factors and employee performance: A comprehensive analysis. In A. Hamdan (Ed.), Achieving sustainable business through AI, technology education and computer science. Studies in Big Data, 158, Springer, Cham. https://doi.org/10.1007/978-3-031-70855-8_53.
  • Alzate, M., Arce-Urriza, M., ve Cebollada, J. (2022). Mining the text of online consumer reviews to analyze brand image and brand positioning. Journal of Retailing and Consumer Services, 67, 102989. https://doi.org/10.1016/j.jretconser.2022.102989.
  • Atan, S. (2020). Metin Madenciliği: İmkânlar, Yöntemler Ve Kisitlar. Mehmet Akif Ersoy University Journal of Social Sciences Institute, 31, 220-239. https://doi.org/10.20875/makusobed.476524.
  • Bakker, A. B., & Demerouti, E. (2017). Job demands–resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273–285. https://doi.org/10.1037/ocp0000056.
  • Basha, M. J., Vijayakumar, S., Jayashankari, J., Alawadi, A. H., & Durdona, P. (2023). Advancements in natural language processing for text understanding. In ICONECT-2023, E3S Web of Conferences, 399, 04031. https://doi.org/10.1051/e3sconf/202339904031.
  • Çakmakçı, Y. (2020). Determination of consumer perception on eco-friendly concepts used in the marketing of various food products (The case of Tekirdağ/Süleymanpaşa). (Master’s thesis), Tekirdağ Namık Kemal University, Institute of Social Sciences, Tekirdağ, Türkiye.
  • Călin, A. D., & Coroiu, A. M. (2024). What is the attitude of romanian smallholders towards a ground mole infestation? A study using topic modelling and sentiment analysis on social media and blog discussions. Animals, 14(24), 3611. https://doi.org/10.3390/ani14243611.
  • Çebi, K., Özyürek, S., & Türkyılmaz, D. (2018). The factors affecting consumer choices in dairy products: the case of Erzincan. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 70-77. https://doi.org/10.29133/yyutbd.348206.
  • Chen, C. W. (2023). A Feasibility Discussion: Is ML suitable for predicting sustainable patterns in consumer product preferences. Sustainability, 15(5), 3983. https://doi.org/10.3390/su15053983.
  • Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
  • Cubukcu Cerası, C., Balcıoğlu, Y. S., Huseynov, F., & Kılıç, A. (2024). A comprehensive text mining application to understand social media's impact on consumer perception of green consumption. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 28-37.
  • De, S., Dey, S., Bhatia, S., & Bhattacharyya, S. (2022). Chapter 1 - An introduction to data mining in social networks. In S. De, S. Dey, S. Bhattacharyya, & S. Bhatia (Eds.), Advanced data mining tools and methods for social computing (pp. 1–25). Academic Press. https://doi.org/10.1016/B978-0-32-385708-6.00008-4
  • Delanerolle, G., Bouchareb, Y., Shetty, S., Cavalini, H., & Phiri, P. (2025). A pilot study using natural language processing to explore textual electronic mental healthcare data. Informatics, 12(1), 28. https://doi.org/10.3390/informatics12010028.
  • Dinca, V. M., Trocinescu, B., Stamule, S., Bunea, M. & Dinu, V. (2024). Opportunities and challenges for managers within the East-European agriculture sector: Case study on Romania. E&M Economics and Management, 27(4), 121–134. https://doi.org/10.15240/tul/001/2024-4-008.
  • Drury, B., Almeida, J. J. (2011). Identification of fine grained feature based event and sentiment phrases from business news stories. In Proceedings of the Association for Computing Machinery. Association for Computing Machinery. https://doi.org/10.1145/1988688.1988720.
  • Drury, B., & Roche, M. (2019). A survey of the applications of text mining for agriculture. Computers and Electronics in Agriculture, 163, 104864. https://doi.org/10.1016/j.compag.2019.104864.
  • Dumitru, E. A., Sterie, C. M., Rodino, S., & Butu, M. (2023). Consumer preferences in the purchase of agri-food products: Implications for the development of family farms. Agriculture, 13(8), 1478. https://doi.org/10.3390/agriculture13081478.
  • Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1–54. https://doi.org/10.18637/jss.v025.i05.
  • Fellows, I. (2018). wordcloud: Functionality to create pretty word clouds, visualize differences and similarity between documents, and avoid over-plotting in scatter plots with text (R package version 2.6). CRAN. http://blog.fellstat.com/?cat=11.
  • Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine Publishing Company. http://www.sxf.uevora.pt/wp-content/uploads/2013/03/Glaser_1967.pdf.
  • Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297. https://doi.org/10.1093/pan/mps028.
  • Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough?: An experiment with data saturation and variability. Field Methods, 18(1), 59–82. https://doi.org/10.1177/1525822X05279903.
  • Gutiérrez Domínguez, A., Roig-Tierno, N., Chaparro-Banegas, N., & García-Álvarez-Coque, J.-M. (2024). Natural language processing of social network data for the evaluation of agricultural and rural policies. Journal of Rural Studies, 109, 103341. https://doi.org/10.1016/j.jrurstud.2024.103341.
  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: a k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
  • Hegde, G., Hulipalled, V. R., & Simha, J. B. (2021). Price prediction of agriculture commodities using machine learning and NLP. In 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) 1–6. IEEE. https://doi.org/10.1109/ICSTCEE54422.2021.9708582.
  • Helvacı, N. (2024). Socio-economic analysis of the horse racing industry in Turkey (Master’s thesis). Tekirdağ Namık Kemal University, Institute of Social Sciences, Tekirdağ, Türkiye.
  • Hou, Y., & Huang, J. (2025). Natural language processing for social science research: A comprehensive review. Chinese Journal of Sociology, 11(1), 121–157. https://doi.org/10.1177/2057150X241306780.
  • Hsu, S., Gligor, D., Garg, V., Gölgeci, I., & Choi, R. J. (2025). Exploring supply chain capabilities as drivers for willingness to adopt blockchain technology using a technology–organization–environment (TOE) framework. Production Planning & Control, 36(16), 2382–2398. https://doi.org/10.1080/09537287.2025.2533186.
  • Huang, Y., Wang, X., Wang, R., & Min, J. (2022). Analysis and recognition of food safety problems in online ordering based on reviews text mining. Wireless Communications and Mobile Computing, 2022, 4209732. https://doi.org/10.1155/2022/4209732.
  • Hutto, C. J., & Gilbert, E. E. (2014). Vader: a parsimonious rule-based model for sentiment analysis of social media text [Paper presentation]. Eighth International AAAI Conference on Weblogs and Social Media (ICWSM-14).
  • Iftikhar, A., Purvis, L., & Giannoccaro, I. (2021). A meta-analytical review of antecedents and outcomes of firm resilience. Journal of Business Research, 135, 408–425. https://doi.org/10.1016/j.jbusres.2021.06.048.
  • İnan, R. Assessment of Consumers of Organic Food Purchase Behavior and Attitudes. Journal of Tourism and Gastronomy Studies, 9(1), 220-235. https://doi.org/10.21325/JOTAGS.2021.786
  • ISSA, F. (2015). Methods of Data Collection in Agricultural Extension Research. AESON.
  • Javaid, M., Haleem, A., Singh, R. P., & Sinha, A. K. (2024). Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), 100083. https://doi.org/10.1016/j.grets.2024.100083
  • Jiang, J. (2012). Information Extraction from Text. In: Aggarwal, C., Zhai, C. (eds) Mining Text Data. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3223-4_2
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Kadirhanoğulları, İ. H., Karadaş, K., Özger, Ö., Konu, M. (2021). Determination of Organic Product Consumer Preferences with Decision Tree Algorithms: Sample of Iğdır Province. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(1), 188-196. https://doi.org/10.29133/yyutbd.799465
  • Kaçmaz, K. S., Aşkan, E., & Topcu, Y. (2023). Consumer perception and purchase attitude towards genetically modified foods during the COVID-19 pandemic: The case of Erzurum, Türkiye. Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 543–555. https://doi.org/10.29133/yyutbd.1319800
  • Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7-15. https://doi.org/10.1016/0020-0190(89)90102-6
  • Kao, A. ve Poteet, S. (2005). Text mining and natural language processing: Introduction for the special issue. SIGKDD Explorations Newsletter, 7(1), 1–2. https://doi.org/10.1145/1089815.1089816.
  • Karami, A., Bennett, L. S., & He, X. (2018). Mining public opinion about economic issues: Twitter and the U.S. presidential election. International Journal of Strategic Decision Sciences, 9(1), 11. https://doi.org/10.4018/IJSDS.2018010102.
  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607-610. https://doi.org/10.1177/001316447003000308.
  • Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). Big data. The parable of Google Flu: traps in big data analysis. Science (New York, N.Y.), 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506.
  • Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human-Centered Informatics, 5(1), 1-167.
  • Loria, S. (2018). Textblob: Simplified text processing. https://textblob.readthedocs.io/en/dev/. Access date: 02.03.2025.
  • Maithili, K., Naveen Raja, S. M., Kumar, R. P., & Koli, S. (2023). A survey on NLP (natural language processing) and transactions on NNL (neural networks and learning systems). E3S Web of Conferences, 430, 01148. https://doi.org/10.1051/e3sconf/202343001148.
  • Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample Size in Qualitative Interview Studies: Guided by Information Power. Qualitative Health Research, 26(13), 1753–1760. https://doi.org/10.1177/1049732315617444.
  • Moldovan, M.-G., Dabija, D.-C., Stanca, L., & Pocol, C. B. (2024). A qualitative study on the consumer behaviour related to food waste: romanian perspectives through word cloud and sentiment analysis. Sustainability, 16(10), 4193. https://doi.org/10.3390/su16104193.
  • Nyariki, D.M. (2009). Household data collection for socio-economic research in agriculture: Approaches and challenges in developing countries. Journal of Social Sciences, 19, 91 - 99.
  • OECD. (2023). AI in Policy Evaluation: Governing with Artificial Intelligence. OECD Publishing. Paris, https://doi.org/10.1787/795de142-en.
  • Paleologo, M., Castellini, G., Bosio, A. C., Fontana, M., & Graffigna, G. (2024). Exploring social media to understand perceptions of milk quality among farmers, processors, and citizen-consumers. Foods, 13(16), 2526. https://doi.org/10.3390/foods13162526.
  • Parashar, S., Singh, S., & Sood, G. (2023). Examining the role of health consciousness, environmental awareness and intention on purchase of organic food: A moderated model of attitude. Journal of Cleaner Production, 386, 135553. https://doi.org/10.1016/j.jclepro.2022.135553.
  • Pedersen, T. L. (2023). ggraph: an implementation of grammar of graphics for graphs and networks. R package version 2.1.1. https://CRAN.R-project.org/packag e=ggraph.
  • Penone, C., Giampietri, E. & Trestini, S. (2024). Exploring farmers’ intention to adopt marketing contracts: empirical insights using the TOE framework. Agric Econ 12, 39 (2024). https://doi.org/10.1186/s40100-024-00333-7.
  • Prasad, J. R., Prasad, R. S., & Kulkarni, U. V. (2008). A decision support system for agriculture using natural language processing (adss). In Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 1-13.
  • R Core Team. (2024). R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  • Rashid, A. B., & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277.
  • Robinson, D. & Silge, J. (2022). widyr: Widen, process, then re-tidy data (R package version 0.1.5) Computer software. CRAN. https://doi.org/10.32614/CRAN.package.widyr.
  • Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
  • Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining techniques for extracting information from research articles. In K. Shaalan, A. Hassanien, & F. Tolba (Eds.), Intelligent Natural Language Processing: Trends and Applications. Studies in Computational Intelligence, Springer, 740, 235-250).. https://doi.org/10.1007/978-3-319-67056-0_18.
  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513-523.
  • Schnieder, M., Behbehani, R., Canhoto, A. I., Beltagui, A., Kumar, N., & McCloskey, J. (2024). Asking vs. listening: A comparative analysis of focus groups and text mining customer online reviews (Version 1). University of Sussex. https://hdl.handle.net/10779/uos.28174889.v1
  • Siegrist, J. (2012). Effort-reward imbalance at work: theory, measurement and evidence. Universitätsklinikum Düsseldorf, Institut für Medizinische Soziologie. https://www.uniklinik-duesseldorf.de/fileadmin/Fuer-Patienten-und-Besucher/Kliniken-Zentren-Institute/Institute/Institut_fuer_Medizinische_Soziologie/Dateien/ERI/ERI-Website.pdf.
  • Silge, J., & Robinson, D. (2016). Tidytext: Text mining and analysis using tidy data principles in R. Journal of Open Source Software, 1(3), 37. https://doi.org/10.21105/joss.00037.
  • Soleimanian Gharehchopogh, F., & Abbasi Khalifelu, Z. (2011). Evaluation of intelligent tutoring systems: Instruction and education approach. International Journal of Innovation, Management and Technology, 2(5), 425–429.
  • Sørensen, M. P., Ravn, T., Bendtsen, A.-K., Reyes Elizondo, A., Kaltenbrunner, W., Ščepanović, R., Marušić, A., Kavouras, P., Labib, K., Tijdink, J. K., Veltri, G. A., & Bergmans, J. (2020). Report on the results of the focus group interviews (SOPs4RI Deliverable D5.2, Version 1.0). SOPs4RI Consortium. https://www.sops4ri.eu/wp-content/uploads/D5.2_Report-on-the-Results-of-the-Focus-Group-Interviews.pdf.
  • Stryker, C., & Holdsworth, J. (2025). Natural language processing: the future of AI. IBM. https://www.ibm.com/think/topics/natural-language-processing. Access date: 02.04.2025.
  • Surjandari, I., Naffisah, M. S. N., & Prawiradinata, M. I. (2015). Text mining of twitter data for public sentiment analysis of staple foods price changes. Journal of Industrial and Intelligent Information, 3(3), 253-257.
  • Taysi, M. R., İnci, H., & Karakaya, E. (2021). Determining organic product consumption preferences in terms of benefit, attitude and purchase intention. ISPEC Journal of Agricultural Sciences, 5(2), 463–475. https://doi.org/10.46291/ISPECJASvol5iss2pp463-475
  • Topaçan, Ü. (2016). Sentiment analysis in social media posts: A study on machine learning approaches (Doctoral dissertation). Marmara University, Institute of Social Sciences, Istanbul, Türkiye.
  • Turgut, H., Tokmak, İ., & Gucel, C. (2012). The effect of employees’ organizational justice perceptions on their organizational commitment: a university sample. International Journal of Business and Management Studies, 4(1), 21-30.
  • Viégas, F. B., & Wattenberg, M. (2008). Tag clouds and the case for vernacular visualization. Interactions, 15(4), 49-52.
  • Vijayarani, S., & Janani, R. (2016). Text mining: Open source tokenization tools – An analysis. Advanced Computational Intelligence: An International Journal (ACII), 3(1), 37. https://doi.org/10.5121/acii.2016.3104.
  • Wang, Y., Ahmed, S., & Bee, A. (2023). Selective avoidance as a cognitive response: Examining the political use of social media and surveillance anxiety in avoidance behaviours. Behaviour & Information Technology, 43, 1–15. https://doi.org/10.1080/0144929X.2023.2182609.
  • Whisner, C. M., Wang, H., Felix, S., & Maciejewski, R. (2016). Mining the twitter-sphere for consumer attitudes towards dairy. The FASEB Journal, 30(1 Supplement), 897.2. https://doi.org/10.1096/fasebj.30.1_supplement.897.2.
  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
  • Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., & Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686.
  • Ylilehto, M., Liljamo, P., Raatiniemi, L., & Kanste, O. (2021). Leader's perceptions of the impact of increasing use of e-health services on assessing the need for treatment: qualitative study on secondary care emergency department. Finnish Journal of eHealth and eWelfare, 13(1), 32-48. https://doi.org/10.23996/fjhw.96161.
  • Yüksel, A. S., & Tan, F. G. (2018). Knowledge discovery in social networks using text mining techniques. Journal of Engineering Sciences and Design, 6(2), 324-333. https://doi.org/10.21923/jesd.384791.
  • Yüzbaşıoğlu, R. (2021). Consumer preferences for cooperative branded products: the case of Tokat province central district. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(3), 477-484. https://doi.org/10.24180/ijaws.943111.
  • Yüzbaşıoğlu, R., & Kaplan, E. (2019). Determination of environmental awareness in purchasing behavior of individuals (The Case of Tokat Central Country). Rewieved Journal of Urban Culture and Management, 12(38), 214-224.
There are 82 citations in total.

Details

Primary Language English
Subjects Agricultural Policy, Marketing in Agricultural Management, Agricultural Economics (Other)
Journal Section Research Article
Authors

Yusuf Çakmakçı 0000-0002-5136-9102

Nuray Helvacı 0009-0003-8602-5099

Harun Hurma 0000-0003-1845-3940

İdris Akkuzu 0000-0003-1069-9719

Submission Date April 25, 2025
Acceptance Date November 24, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 35 Issue: 4

Cite

APA Çakmakçı, Y., Helvacı, N., Hurma, H., Akkuzu, İ. (2025). New Approaches for Food Marketing Strategies and Sectoral Policies: Text Mining and NLP-Based Sentiment Analysis. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(4), 758-775.
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.