Konferans Bildirisi
BibTex RIS Kaynak Göster

A Low-Cost Microcontroller Based Air Temperature, Humidity and Pressure Datalogger System Design for Agriculture

Yıl 2020, , 211 - 219, 31.03.2020
https://doi.org/10.29133/yyutbd.669458

Öz

Nowadays, it is accepted that climate change can threaten food safety. Losses in production areas due to climate change have the potential to create major devastating effects. In agricultural areas, rapid and effective measures should be taken against climate parameters that are not under human control. For this purpose, approaches such as precision or smart agriculture are becoming widespread. Low cost microcontroller-based devices that can help to take the necessary measures by rapidly measuring the basic climate parameters are gaining importance especially in the lands of small scale agricultural enterprises. For this purpose, developed a customizable and re-programmable datalogger system which can measure the basic meteorological values for agricultural purposes under field conditions with low-cost parts. The system consist of an Ardunio UNO R3 microcontroller card, a Bosch Sensortech BME280 integrated environmental sensor, a data storage unit, a LCD and an USB supported battery unit which allows the system to be used as a portable. The BME280 sensor is widely used in scientific studies, can measure air pressure, relative humidity and temperature, and communicate with microcontrollers. For the operation of the system, a software was developed in Arduino IDE (Internal Development Environment) and installed on microcontroller of Arduino UNO R3. The system was left on outdoor conditions with a top cover for one week in spring and one week in summer and it was found that it could record data continuously for one hour intervals.

Kaynakça

  • Beyaz, A. & Beyaz, R. (2015). Traktörde güvenlik amaçlı galvanik deri tepkisi sensörü kullanım olanaklarının belirlenmesi. Mühendislik Bilimleri ve Tasarım, 3(3): 121-125.
  • Corrales C. J., Angelov, P. & Iglesias, J. A. (2018). Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II: Proceedings of the 2nd International Conference of ICT for Adapting Agriculture to Climate Change (AACC’18). Cham, Switzerland: Springer Nature.
  • Deshmukh, A. V. (2007). Microcontrollers, Theory and Applications. New York, USA: Mac-Graw- Hill.
  • Doeswijk, T.G. & Keesman, K.J. (2005). Improving Local Weather Forecasts for Agricultural Applications. Shokin, Y. I., Potaturkin, O. I. (Eds.), Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology (pp. 107-112). Novosibirsk, Russia: IASTED/ACTA Press.
  • D’Ausilio, A. (2012). Arduino: A low-cost multipurpose lab equipment. Behavior Research Methods, 44(2), 305-313. doi:10.3758/s13428-011-0163-z
  • Gridling, G., & Weiss, B. (2007). Introduction to Microcontrollers. Vienna, Austria: Vienna University of Technology.
  • Jimenez, A. F., Herrera, E. F., Ortiz, B. V., Ruiz, A., & Cardenas, P. F. (2018). Inference System for Irrigation Scheduling with an Intelligent Agent. Corrales C. J., Angelov, P., Iglesias, J. A. (Eds.). Proceedings of the Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II: Proceedings of the 2nd International Conference of ICT for Adapting Agriculture to Climate Change (AACC’18), (pp. 1-20). Cham, Switzerland: Springer Nature.
  • Joshi, M. (2016). Polymer Nanocomposite-based Biosensors for Drug Delivery Applications. Kharkwal, H., & Janaswamy, S. (Eds.), Natural Polymers for Drug Delivery, (pp. 71-77). Oxfodshire, UK - Boston, USA: CABI.
  • Makukha, V. K., & Yagodkina, A. V. (2016). Embeddable Module of Environmental Parameters. Proceedings of the 17th International Conference of Young Specialists on Micro/ Nanotechnologies and Electron Devices (EDM 2016), (pp. 665-667). Erlagol, Altai, Russia: IEEE.
  • Pietraru, R. N., Banu, A. Ș., Mocanu, Ș., & Saru, D. (2018). Low Cost Technologies for Awarness and Early Warning in Conditions of Severe Weather. Roceanu, I. (Eds.), Proceedings of the 14th International Scientific Conference eLearning and Software for Education (Vol. 2), (pp. 349-354). Bucharest, Romania: "Carol I" National Defence University Publishing House.
  • Ramya, R., Sandhya, C., & Shwetha, R. (2017). Smart farming systems using sensors. Proceedings of the IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), (pp. 218-222). Chennai, India: IEEE.
  • Strigaro, D., Cannata, M., & Antonovic, M. (2019). Boosting a weather monitoring system in low ıncome economies using open and non-conventional systems: Data quality analysis. Sensors, 19(5), 1185. doi:10.3390/s19051185
  • Sudantha, B. H., Warusavitharana, E. J., Ratnayake, G. R., Mahanama, P. K. S., Cannata, M., & Strigaro, D. (2018). Building an Open-source Environmental Monitoring System-A Review of State-of-the-art and Directions for Future Research. Proceedings of the 3rd International Conference on Information Technology Research (ICITR), (pp. 1-9). Chennai, India: IEEE.
  • Valenzuela, A. A., Schwab, M., Silnik, A. A., Debattista, A. F., & Kiessling, R. A. (2018). Low Power Wireless Sensor Node Platform for Agriculture Monitoring in Argentina. Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), (pp. 101-105). Zhengzhou, China: IEEE.

Tarım İçin Düşük Maliyetli ve Mikrodenetleyici Tabanlı Bir Hava Sıcaklığı, Nemi ve Basıncı Veri Kayıt Sistemi Tasarımı.

Yıl 2020, , 211 - 219, 31.03.2020
https://doi.org/10.29133/yyutbd.669458

Öz

Günümüzde, iklim değişikliğinin gıda güvenliğini tehdit edebileceği kabul edilmektedir. İklim değişikliğinden dolayı üretim alanlarındaki kayıplar büyük yıkıcı etkiler yaratma potansiyeline sahiptir. Tarımsal alanlarda, insan kontrolünde olmayan iklim parametrelerine karşı hızlı ve etkili önlemler alınmalıdır. Bu amaçla hassas veya akıllı tarım gibi yaklaşımlar yaygınlaşmaktadır. Özellikle küçük ölçekli tarım işletmelerinin arazileri için temel iklim parametrelerini hızla ölçerek gerekli önlemlerin alınmasına yardımcı olabilecek düşük maliyetli mikrodenetleyici tabanlı cihazlar giderek önem kazanmaktadır. Bu nedenle, tarımsal amaçlar için temel meteorolojik değerleri düşük maliyetli parçalarla tarla koşullarında ölçebilen özelleştirilebilir ve yeniden programlanabilir bir veri kaydedici sistem geliştirilmiştir. Sistem bir Ardunio UNO R3 mikrodenetleyici kartı, bir Bosch Sensortech BME280 entegre çevre sensörü, bir veri depolama birimi, bir LCD ve sistemin taşınabilir olarak kullanılmasını sağlayan USB destekli bir pil biriminden oluşur. BME280 sensörü bilimsel çalışmalarda yaygın olarak kullanılmakta, hava basıncını, bağıl nemi ve sıcaklığı ölçebilmekte ve mikrodenetleyicilerle iletişim kurabilmektedir. Sistemin çalışması için Arduino IDE'de (Dâhili Geliştirme Ortamı) bir yazılım geliştirilmiş ve Arduino UNO R3'de bulunan mikrodenetleyiciye kurulmuştur. Sistem ilkbaharda bir hafta ve yazın bir hafta boyunca, üzerine koruyucu bir muhafaza konularak dış mekân koşullarında bırakılmış ve bir saat aralıklarla sürekli veri kaydedebildiği bulunmuştur.

Kaynakça

  • Beyaz, A. & Beyaz, R. (2015). Traktörde güvenlik amaçlı galvanik deri tepkisi sensörü kullanım olanaklarının belirlenmesi. Mühendislik Bilimleri ve Tasarım, 3(3): 121-125.
  • Corrales C. J., Angelov, P. & Iglesias, J. A. (2018). Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II: Proceedings of the 2nd International Conference of ICT for Adapting Agriculture to Climate Change (AACC’18). Cham, Switzerland: Springer Nature.
  • Deshmukh, A. V. (2007). Microcontrollers, Theory and Applications. New York, USA: Mac-Graw- Hill.
  • Doeswijk, T.G. & Keesman, K.J. (2005). Improving Local Weather Forecasts for Agricultural Applications. Shokin, Y. I., Potaturkin, O. I. (Eds.), Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology (pp. 107-112). Novosibirsk, Russia: IASTED/ACTA Press.
  • D’Ausilio, A. (2012). Arduino: A low-cost multipurpose lab equipment. Behavior Research Methods, 44(2), 305-313. doi:10.3758/s13428-011-0163-z
  • Gridling, G., & Weiss, B. (2007). Introduction to Microcontrollers. Vienna, Austria: Vienna University of Technology.
  • Jimenez, A. F., Herrera, E. F., Ortiz, B. V., Ruiz, A., & Cardenas, P. F. (2018). Inference System for Irrigation Scheduling with an Intelligent Agent. Corrales C. J., Angelov, P., Iglesias, J. A. (Eds.). Proceedings of the Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II: Proceedings of the 2nd International Conference of ICT for Adapting Agriculture to Climate Change (AACC’18), (pp. 1-20). Cham, Switzerland: Springer Nature.
  • Joshi, M. (2016). Polymer Nanocomposite-based Biosensors for Drug Delivery Applications. Kharkwal, H., & Janaswamy, S. (Eds.), Natural Polymers for Drug Delivery, (pp. 71-77). Oxfodshire, UK - Boston, USA: CABI.
  • Makukha, V. K., & Yagodkina, A. V. (2016). Embeddable Module of Environmental Parameters. Proceedings of the 17th International Conference of Young Specialists on Micro/ Nanotechnologies and Electron Devices (EDM 2016), (pp. 665-667). Erlagol, Altai, Russia: IEEE.
  • Pietraru, R. N., Banu, A. Ș., Mocanu, Ș., & Saru, D. (2018). Low Cost Technologies for Awarness and Early Warning in Conditions of Severe Weather. Roceanu, I. (Eds.), Proceedings of the 14th International Scientific Conference eLearning and Software for Education (Vol. 2), (pp. 349-354). Bucharest, Romania: "Carol I" National Defence University Publishing House.
  • Ramya, R., Sandhya, C., & Shwetha, R. (2017). Smart farming systems using sensors. Proceedings of the IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), (pp. 218-222). Chennai, India: IEEE.
  • Strigaro, D., Cannata, M., & Antonovic, M. (2019). Boosting a weather monitoring system in low ıncome economies using open and non-conventional systems: Data quality analysis. Sensors, 19(5), 1185. doi:10.3390/s19051185
  • Sudantha, B. H., Warusavitharana, E. J., Ratnayake, G. R., Mahanama, P. K. S., Cannata, M., & Strigaro, D. (2018). Building an Open-source Environmental Monitoring System-A Review of State-of-the-art and Directions for Future Research. Proceedings of the 3rd International Conference on Information Technology Research (ICITR), (pp. 1-9). Chennai, India: IEEE.
  • Valenzuela, A. A., Schwab, M., Silnik, A. A., Debattista, A. F., & Kiessling, R. A. (2018). Low Power Wireless Sensor Node Platform for Agriculture Monitoring in Argentina. Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), (pp. 101-105). Zhengzhou, China: IEEE.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

M. Yağmur Polat 0000-0003-2795-4798

Yayımlanma Tarihi 31 Mart 2020
Kabul Tarihi 15 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Polat, M. Y. (2020). A Low-Cost Microcontroller Based Air Temperature, Humidity and Pressure Datalogger System Design for Agriculture. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 211-219. https://doi.org/10.29133/yyutbd.669458

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.