Araştırma Makalesi
BibTex RIS Kaynak Göster

Salisilik Asit ile Priming Uygulamasının Acı Fiğ'ın (Vicia ervilia L.) Çimlenmesi ve Fizyolojik Özellikleri Üzerine Tuzluluk Etkilerinin Azaltılması

Yıl 2021, , 98 - 110, 30.03.2021
https://doi.org/10.29133/yyutbd.681949

Öz

Tuzluluk, bitkilerin büyümesini ve verimi etkileyen en önemli çevresel streslerden biridir. Salisilik asitin (SA), tuzluluğa maruz kalan acı fiğin (Vicia ervilia L.), çimlenmesi, fide gelişimi ve bazı fizyolojik özellikleri üzerindeki etkisi, tesadüf bloklarında faktöriyel deneme modeline göre üç tekerrürlü olarak incelenmiştir. Çalışmada uygulamalar; 0, 50 ve 100 mM'lik üç seviyede tuzluluktan ve 0, 0.1 ve 0.2 mM'lik üç dozda SA priming uygulamasından oluşmuştur. Sonuçlar, tuzluluk arttıkça çimlenme ve ilgili özelliklerin, fide büyümesinin ve Hill reaksiyon hızının azaldığını, ancak ortalama çimlenme süresinin ve hücre hasarının arttığını göstermiştir. SA’nın 0.1 ve 0.2 mM uygulamaları, kontrole kıyasla bu parametreleri iyileştirmiştir. Tuzluluğun 50 ve 100 mM’lık ve SA’nın 0.2 ve 0.1 mM'lik seviyeleri çimlenme parametreleri ve bitki büyümesi üzerinde en güçlü etkiyi sağlamıştır. 100 mM tuzluluk seviyesinde, 0.2 mM'lik SA oranı, yaprak nispi su içeriği, fide taze ağırlığı, kök ve gövde uzunluğu, kök ve gövde taze ağırlığı üzerinde daha etkili olmuştur. Farklı tuzluluk seviyelerinde 0.2 mM SA, Hill reaksiyon hızını ve acı fiğin hücre hasarını arttırmıştır. Tuzluluk stresi altında SA uygulaması, acı fiğin çimlenme parametrelerinin, fide gelişiminin ve fizyolojik özelliklerinin iyileştirilmesi bakımından önerilebilir

Kaynakça

  • Abdel-Baki, A. A., & Anderson, J. D. (1973). Viability and leaching sugars from germinating barley. Crop Science, 10, 31-34.
  • Abdullah, A. Y., Muwalla, M. M., & Harb, M. Y. (1999). Evaluation of various protein sources for growing and finishing Awassi lambs. Turkish Journal of Veterinary and Animal Sciences, 23, 475- 482.
  • Aghbolaghi, M., & Sedghi, M. (2014). The effect of halo-and hydro-priming on germination characteristics of millet seeds under salinity stress. Cercetari Agronomice in Moldova, 47(2), 41-48.
  • Akbulut, G. B., Yigit, E., Kaya, A., & Aktas, A. (2018). Effect af salicylicl acid on organic selenium on wheat (Triticum aestivum L.) exposed to fenoxaprop-p-ethyl. Ecotoxicology and Environmental Safety, 148, 901-909.
  • Alamri, S. A., Siddiqui, M. H., Al-Khaishani, M. Y., & Ali, H. M. (2018). Response of salicylic acid on seed germination and physio-biochemical changes of wheat under salt stress. Acta Scientific Agriculture, 2(5), 36-42.
  • Ashraf, M., & Foolad, M. R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216.
  • Ashraf, M., & Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salte growth and ion transport at early growth stages. Acta Physiologiae Plantarum, 23, 407-414.
  • Ashraf, M, & Waheed, A.(1990). Screening of local exotic of lentil (Lens culinaris Medik) for salt tolerance at two growth stage. Plant Soil, 128,167-176.
  • AOSA. (1983). Seed vigor testing handbook. Contribution 32, Handbook on Seed Testing, AOSA, Lincoln, NE, USA.
  • Baker, C. J., & Monck, N. M. (1994). An improved method for monitoring cell death in a cell suspension and leaf disk assays using Evans blue. Plant Cell, 39, 7-12.
  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379-386.
  • Bissati, K. E., Delphin, E., Murata, N., Etienne, A. L., & Kirilovsky, D. (2000). Photosystem II flouresence - quenching in cyanobacterrium Synechocystis PCC6803: involvement of two different mechanisms. Biochimica Biophysica Acta, 1457, 229-242.
  • Borsani, O., Valpuestan, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024-1030.
  • Bradford, K. J. (1995). Water relations in seed germination. In: Kigel J, Galili G (eds.) Seed development and germination Marcel dekkerinc. New York. pp 351-396.
  • Brancalion, P. H. S., Novembre, A. D. L. C., Rodrigues, R. R., & Tay, D. (2008). Priming of Mimosa bimucronata seeds: a tropical tree species from Brazil. Acta Horticulturae, 82, 163-168.
  • Dai, Q. L., Chen, C., Feng, B., Liu, T., Tian, X., Gong, Y., Sun, Y., Wang, J., Du, S. (2009). Effects of different NaCl concentration on the antioxidant enzymes in oilseed rape (Brassica napus L.) seedlings. Plant Growth Regulation, 59(3), 273-278.
  • De, F., Kar, R. K. (1994). Seed germination and seedling growth of mung bean (Vigna radiate) under water stress induced by PEG-6000. Seed Science and Technology, 23, 301-304.
  • Ellis, R. A., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
  • Eraslan, F., Inal, A,, Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plant subjected to combined salinity and boron toxicity. Scientia Horticulturae, 27, 287-298.
  • Ervin, E. H., Zhang, X., & Schmidt, R. E. (2005). Exogenous salicylic acid enhances post-transplant success of heated Kentucky bluegrass and tall fescue sod. Crop Science, 45(1),240–244.
  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003) .Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41(2), 281-284.
  • Foti, R., Abureni, K., Tigere, A., Gotosa, J., & Gere, J. (2008). The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. Journal of Arid Environments, 72, 1127-1130.
  • Gautam, S., & Singh, P. K. (2009). Salicylic acid induced salinity tolerance in corn grown under NaCl stress. Acta Physiologiae Plantarum, 31,1185-1190.
  • Hamid, H.‚ Rehman, K., & Ashraf ,Y. (2010). Salicylic acid–induced growth and biochemical changes in salt-stressed wheat. Commun. Soil Science and Plant Analysis, 41, 373-389.
  • Hayat, Q., Hayat, S., Irfana, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimaental Botany, 68, 14–25.
  • Hendawy, S. F., & Khalid, K. A. (2005). Response of sage Salvia officinalis L. plants to zinc application under different salinity levels. Journal of Sciences Research, 1(2),147-155.
  • Hui-Jie, Z., Xue-Juan, Z. H., Pei-Fang, M., Yue-Xia, W., Wei-Wei, H., Hong, L., & Yi-Dan, Z. (2011). Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecologica Sinica, 31, 259–263.
  • Katergi, N., Van Horn, J. W., Hamdy, A., Karan, F., & Mastrovtilli, M. (1994). Effect of salinity on emergence and on water stress early seedling growth of sunflower and maize. Agricultural Water Management, 26, 81-91.
  • Khan, M. A., & Ungar, I. A. (1985). The role of hormone in regulating the germination of polymorphic seeds and early seedling growth of Atriplex under saline condition. Acta Physiologiae Plantarum, 63,109-113.
  • Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology, 6, 5-8.
  • Korkmaz, A., Uzunlu, M., & Demirkairan, A. R. (2007). Treatment with acetylsalicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29, 503-508.
  • Kruk, J., Czytko, H. H., Oettmeier, W., & Trebest, A. (2005). Tocopherol as singlet oxygen scavenger in photosystem II. Plant Physiology, 162, 749-757.
  • Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S., & Yin, C. (2018). Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content, Front Plant Science, 9, 275.
  • López Bellido, L. (1994). Grain legumes for animal feed. In: Neglected crops: 1492 from a different perspective. Hernándo Bermejo JE and León J (eds.) Plant Production and Protection Series No. 26. FAO, Rome, Italy. pp 273-288.
  • Lu, C. M., & Vonshak, A. (2002). Effect of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologiae Plantarum, 114(3), 405-413.
  • Mori, M., Di-Mola, I., & Quaglietta-Chiaranda, F. (2011). Salt stress and transplant time in snap bean: growth and productive behavior. International Journal of Plant Production, 5, 49-63.
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663.
  • Orcutt, D. M., & Nilsen, E. T. (2000). The physiology of plants under stress: soil and biotic factors. John Wiley and Sons, New York. pp 177-235.
  • Patsikka, .E, Aro, E. M., & Tyystjarvi, E. (2001). Mechanismm of copper-enhanced photoinhibition in thylakoid membranes. Physiologiae Plantarum, 113,142-150.
  • Popova, L., Pancheva, T., & Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarian Journal of Plant Physiology, 23, 85–93.
  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 - metabolizing enzymes (salicylic acid -mediated oxidative damage requires H2O2). Plant Physiology, 115(1),137-149.
  • Sadeghi, G. H., Pourreza, J., Samie, A., & Rahmani, H. (2009). Chemical composition and some anti-nutrient content of raw and processed bitter vetch (Vicia ervilia) seed for use as feeding stuff in poultry diet. Tropical Animal Health and Production, 41, 85-93.
  • Shakirova, F. M., Shakbbutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, K. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedling induces by salicylic acid and salinity. Plant Science, 164, 317-322.
  • Shamsadin Saeid, M., Farahbakhsh, H., & Maghsodi mod, A. A. (2008). Effects of salinity stress on germination, vegetative growth and some of physiological traits canola cultivars. Science and Technology of Agriculture and Natural Research, 11(41), 191-202.
  • Sharma, A. D., Thakur, M., Rana, M., & Singh. K. (2004). Effect of plant growth hormones and abiotic stresses on germination, growth and phosphates activities in sorghum bicolor L. Moench seeds. African Journal of Biotechnology, 3, 308-312.
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260.
  • Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 141, 613-619.
  • Szalai, G., Tari, .I, Janda, T., Pestenocz, A., & Paldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43, 637-640.
  • Vlot, A. C., Dempsey, D. A., & Klessing, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47,177-206.

Mitigation of Salinity Effects by Salicylic Acid Priming on Germination and Physiological Characteristics of Bitter Vetch (Vicia ervilia L.)

Yıl 2021, , 98 - 110, 30.03.2021
https://doi.org/10.29133/yyutbd.681949

Öz

Salinity is one of the most important environmental stresses affecting the growth and yield of the plants. The effect of salicylic acid (SA) on growth, germination, and some physiological traits of bitter vetch (Vicia ervilia L.) exposed to salinity was studied in a factorial experiment based on a randomized complete block design with three replications. The experimental treatments were composed of salinity at three levels of 0, 50 and 100 mM and SA priming at three rates of 0, 0.1 and 0.2 mM. The results showed that as salinity was increased, germination and the related traits, seedling growth, and the Hill reaction rate were declined, but mean germination time and cell death were increased. SA application at the rates of 0.1 and 0.2 mM improved these parameters as compared to control. At the salinity levels of 50 and 100 mM, SA rates of 0.2 and 0.1 mM imposed the strongest effect on germination parameters and plant growth. At the salinity level of 100 mM, SA rate of 0.2 mM was more effective on leaf relative water content, seedling fresh weight, root and stem length, and root and stem fresh weight. At different levels of salinity, 0.2 mM SA increased the Hill reaction rate and cell death of bitter vetch. The application of SA under salinity stress for improvement of germination parameters, seedling growth, and physiological traits of bitter vetch could be recommended.

Kaynakça

  • Abdel-Baki, A. A., & Anderson, J. D. (1973). Viability and leaching sugars from germinating barley. Crop Science, 10, 31-34.
  • Abdullah, A. Y., Muwalla, M. M., & Harb, M. Y. (1999). Evaluation of various protein sources for growing and finishing Awassi lambs. Turkish Journal of Veterinary and Animal Sciences, 23, 475- 482.
  • Aghbolaghi, M., & Sedghi, M. (2014). The effect of halo-and hydro-priming on germination characteristics of millet seeds under salinity stress. Cercetari Agronomice in Moldova, 47(2), 41-48.
  • Akbulut, G. B., Yigit, E., Kaya, A., & Aktas, A. (2018). Effect af salicylicl acid on organic selenium on wheat (Triticum aestivum L.) exposed to fenoxaprop-p-ethyl. Ecotoxicology and Environmental Safety, 148, 901-909.
  • Alamri, S. A., Siddiqui, M. H., Al-Khaishani, M. Y., & Ali, H. M. (2018). Response of salicylic acid on seed germination and physio-biochemical changes of wheat under salt stress. Acta Scientific Agriculture, 2(5), 36-42.
  • Ashraf, M., & Foolad, M. R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216.
  • Ashraf, M., & Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salte growth and ion transport at early growth stages. Acta Physiologiae Plantarum, 23, 407-414.
  • Ashraf, M, & Waheed, A.(1990). Screening of local exotic of lentil (Lens culinaris Medik) for salt tolerance at two growth stage. Plant Soil, 128,167-176.
  • AOSA. (1983). Seed vigor testing handbook. Contribution 32, Handbook on Seed Testing, AOSA, Lincoln, NE, USA.
  • Baker, C. J., & Monck, N. M. (1994). An improved method for monitoring cell death in a cell suspension and leaf disk assays using Evans blue. Plant Cell, 39, 7-12.
  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379-386.
  • Bissati, K. E., Delphin, E., Murata, N., Etienne, A. L., & Kirilovsky, D. (2000). Photosystem II flouresence - quenching in cyanobacterrium Synechocystis PCC6803: involvement of two different mechanisms. Biochimica Biophysica Acta, 1457, 229-242.
  • Borsani, O., Valpuestan, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024-1030.
  • Bradford, K. J. (1995). Water relations in seed germination. In: Kigel J, Galili G (eds.) Seed development and germination Marcel dekkerinc. New York. pp 351-396.
  • Brancalion, P. H. S., Novembre, A. D. L. C., Rodrigues, R. R., & Tay, D. (2008). Priming of Mimosa bimucronata seeds: a tropical tree species from Brazil. Acta Horticulturae, 82, 163-168.
  • Dai, Q. L., Chen, C., Feng, B., Liu, T., Tian, X., Gong, Y., Sun, Y., Wang, J., Du, S. (2009). Effects of different NaCl concentration on the antioxidant enzymes in oilseed rape (Brassica napus L.) seedlings. Plant Growth Regulation, 59(3), 273-278.
  • De, F., Kar, R. K. (1994). Seed germination and seedling growth of mung bean (Vigna radiate) under water stress induced by PEG-6000. Seed Science and Technology, 23, 301-304.
  • Ellis, R. A., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
  • Eraslan, F., Inal, A,, Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plant subjected to combined salinity and boron toxicity. Scientia Horticulturae, 27, 287-298.
  • Ervin, E. H., Zhang, X., & Schmidt, R. E. (2005). Exogenous salicylic acid enhances post-transplant success of heated Kentucky bluegrass and tall fescue sod. Crop Science, 45(1),240–244.
  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003) .Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41(2), 281-284.
  • Foti, R., Abureni, K., Tigere, A., Gotosa, J., & Gere, J. (2008). The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. Journal of Arid Environments, 72, 1127-1130.
  • Gautam, S., & Singh, P. K. (2009). Salicylic acid induced salinity tolerance in corn grown under NaCl stress. Acta Physiologiae Plantarum, 31,1185-1190.
  • Hamid, H.‚ Rehman, K., & Ashraf ,Y. (2010). Salicylic acid–induced growth and biochemical changes in salt-stressed wheat. Commun. Soil Science and Plant Analysis, 41, 373-389.
  • Hayat, Q., Hayat, S., Irfana, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimaental Botany, 68, 14–25.
  • Hendawy, S. F., & Khalid, K. A. (2005). Response of sage Salvia officinalis L. plants to zinc application under different salinity levels. Journal of Sciences Research, 1(2),147-155.
  • Hui-Jie, Z., Xue-Juan, Z. H., Pei-Fang, M., Yue-Xia, W., Wei-Wei, H., Hong, L., & Yi-Dan, Z. (2011). Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecologica Sinica, 31, 259–263.
  • Katergi, N., Van Horn, J. W., Hamdy, A., Karan, F., & Mastrovtilli, M. (1994). Effect of salinity on emergence and on water stress early seedling growth of sunflower and maize. Agricultural Water Management, 26, 81-91.
  • Khan, M. A., & Ungar, I. A. (1985). The role of hormone in regulating the germination of polymorphic seeds and early seedling growth of Atriplex under saline condition. Acta Physiologiae Plantarum, 63,109-113.
  • Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology, 6, 5-8.
  • Korkmaz, A., Uzunlu, M., & Demirkairan, A. R. (2007). Treatment with acetylsalicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29, 503-508.
  • Kruk, J., Czytko, H. H., Oettmeier, W., & Trebest, A. (2005). Tocopherol as singlet oxygen scavenger in photosystem II. Plant Physiology, 162, 749-757.
  • Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S., & Yin, C. (2018). Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content, Front Plant Science, 9, 275.
  • López Bellido, L. (1994). Grain legumes for animal feed. In: Neglected crops: 1492 from a different perspective. Hernándo Bermejo JE and León J (eds.) Plant Production and Protection Series No. 26. FAO, Rome, Italy. pp 273-288.
  • Lu, C. M., & Vonshak, A. (2002). Effect of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologiae Plantarum, 114(3), 405-413.
  • Mori, M., Di-Mola, I., & Quaglietta-Chiaranda, F. (2011). Salt stress and transplant time in snap bean: growth and productive behavior. International Journal of Plant Production, 5, 49-63.
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663.
  • Orcutt, D. M., & Nilsen, E. T. (2000). The physiology of plants under stress: soil and biotic factors. John Wiley and Sons, New York. pp 177-235.
  • Patsikka, .E, Aro, E. M., & Tyystjarvi, E. (2001). Mechanismm of copper-enhanced photoinhibition in thylakoid membranes. Physiologiae Plantarum, 113,142-150.
  • Popova, L., Pancheva, T., & Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarian Journal of Plant Physiology, 23, 85–93.
  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 - metabolizing enzymes (salicylic acid -mediated oxidative damage requires H2O2). Plant Physiology, 115(1),137-149.
  • Sadeghi, G. H., Pourreza, J., Samie, A., & Rahmani, H. (2009). Chemical composition and some anti-nutrient content of raw and processed bitter vetch (Vicia ervilia) seed for use as feeding stuff in poultry diet. Tropical Animal Health and Production, 41, 85-93.
  • Shakirova, F. M., Shakbbutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, K. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedling induces by salicylic acid and salinity. Plant Science, 164, 317-322.
  • Shamsadin Saeid, M., Farahbakhsh, H., & Maghsodi mod, A. A. (2008). Effects of salinity stress on germination, vegetative growth and some of physiological traits canola cultivars. Science and Technology of Agriculture and Natural Research, 11(41), 191-202.
  • Sharma, A. D., Thakur, M., Rana, M., & Singh. K. (2004). Effect of plant growth hormones and abiotic stresses on germination, growth and phosphates activities in sorghum bicolor L. Moench seeds. African Journal of Biotechnology, 3, 308-312.
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260.
  • Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 141, 613-619.
  • Szalai, G., Tari, .I, Janda, T., Pestenocz, A., & Paldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43, 637-640.
  • Vlot, A. C., Dempsey, D. A., & Klessing, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47,177-206.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

Sina Siavash Moghaddam 0000-0001-8643-8991

Latifeh Pourakbar Bu kişi benim 0000-0002-2623-7394

Amir Rahımı Bu kişi benim 0000-0002-8200-3103

Faegheh Jangjoo Bu kişi benim

Yayımlanma Tarihi 30 Mart 2021
Kabul Tarihi 27 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Siavash Moghaddam, S., Pourakbar, L., Rahımı, A., Jangjoo, F. (2021). Mitigation of Salinity Effects by Salicylic Acid Priming on Germination and Physiological Characteristics of Bitter Vetch (Vicia ervilia L.). Yuzuncu Yıl University Journal of Agricultural Sciences, 31(1), 98-110. https://doi.org/10.29133/yyutbd.681949

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.