BibTex RIS Kaynak Göster

İran' ın Kuzey-Batı Aegilops Türlerinin Arasındaki Genetik Çeşitliliğininin ASİT-PAGE Analizleri ve ISSRMarkırları ile Değerlendirilmesi

Yıl 2013, Cilt: 23 Sayı: 2, 66 - 75, 01.06.2013

Öz

Inter-Simple Sequence Repeat (ISSR) and ACID-PAGE analyses were used to evaluate genetic diversity and relationships of Aegilops species from North-West of Iran. Thirty-three accessions of six Aegilops species including [Ae. taucshii (D), Ae. cylindrica (CD), Ae. umbellulata (U), Ae. triuncialis (UC), Ae. biuncialis (UM) and Ae. crassa (DM)] were studied in ISSR study. Twelve of the accessions were employed in the ACID-PAGE study. Eleven ISSR primers produced 171 polymorphic bands, which were used to construct the dendrograms. In ISSR method, the studied Aegilops species were subgrouped and it is identified that the species with common genome standed in the same group. ACID-PAGE analysis revealed high rate of polymorphism among Aegilops accessions. Therefore, results showed that there was potencial genetic diversity in the Aegilops species from North-West of Iran, and it could be useful genetic stock in any breeding perspectives. Specially the intra specific genetic diversity could be the feasible genetic base for any selection activities.

Kaynakça

  • Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002). A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defenserelated genes: insights into cereal chromosome structure and function. Plant Molecular Biology. 48: 767–790.
  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007). Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Springer, Doerdrecht, Netherlands. pp. 83–90.
  • Ciaffi M, Lanfiandra D, Porceddu E, Benedettelli S (1993). Storage protein variation in wild emmer (triticum turgidum ssp. dicoccoides) from Jordan and Turkey. 1. Electrophoretic characterization of genotypes. Theoretical and Applied Genetics. 86: 474-480.
  • Ciaffi M, Lanfiandra D, Porceddu E, Benedettelli S (1993). Storage protein variation in wild emmer (triticum turgidum ssp. dicoccoides) from Jordan and Turkey. 2. Patterns of allele distribution. Theoretical and Applied Genetics. 86: 518-525.
  • Gong, HY, Liu AH, Wang JB (2006). Genomic evolutionary changes in Aegilops allopolyploids revealed by ISSR markers. Acta Phytotaxonomica Sinica. 44: 286–295.
  • Hajjar R, Hodgkin T (2007). The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica. 156:1-13.
  • Ki-Hyun K, Abuhena MK, Kwang-Hyun S, Jong-Soon C, Hwa-Young H, Sun-Hee W (2010). Largescale proteome investigation in wild relatives (A, B and genomes) of wheat. Acta Phytotaxonomica Sinica. 10 (1093):1-8
  • Konstantinos G, Penelope J (2010). Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Molcular Phylogenetics and Evolution. Elsevier. 56: 951-961.
  • Kuraparthy V, Chhuneja P, Dhaliwal SH, Kaur S, Bowden RL, Gill BS (2007). Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics. 114: 1379– 13
  • McIntosh RA, Miller TE, Chapman V (1982). Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondite and Sr34 for resistance to P. graminis tritici. Flanzenzucht. 89:295–306.
  • Metakovsky EV, Novoselskaya AY, Sozinov AA (1984). Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis. Theoretical and Applied Genetics. 69: 31-37.
  • Migdadi HM, Tell AM, Masoud S (2006). Genetic diversity in some Aegilops species in Jordan revealed using RAPD. Genetic Resources Newsletter. 139: 47–52.
  • Mohammadi SA, Prasanna BM (2003). Analysis of genetic diversity in crop plants salient statistical tools and considerations. Crop Science, 43: 1235–1248.
  • Monneveux P, Zaharieva M, Rekika D (2000). The utilization of Triticum and Aegilops species for the improvement of durum wheat. In: Royo, C., Nachit, M.M., Di Fonzo, N., Araus, J.L. (Eds.), Durum Wheat Improvement in the Mediterranean Region: New challenges = L’amélioration du blé dur dans larégion méditerranéenne: Nouveaux défis. CIHEAM-IAMZ, Zaragoza. pp. 71–81. Montes MJ, Andre´s MF, Sin E, Lo´pez-Bran˜a I, Martı´n-Sa´nchez JA, Romero MD, Delibes A (2008). Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars. Genome. 51:315–319.
  • Monte JV, Casanova C, Soler C (1999). Genetic variation in Spanish populations of the genus Aegilops revealed by RAPDs. Agronomie 19 419–427.
  • Nei M (1973). Analysis of genetic diversity in subdivided populations Proc. Natl. Acad. Sci. 70: 332133
  • Nei M (1978). Estimation of average hetrozigosity and genetic distance from a small number of individuals. Genetics. 89: 583-590.
  • Nevo E (1998). Genetic diversity in in wild cereals: regional and local studies and their bearing on conservation ex sito and in situ. Genetic Resourses and Crop Evolution. 45: 355-370.
  • Okuno K, Ebana K, Noov B, Yoshida H (1998). Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genetic Resources and Crop Evolution. 45, 389–394.
  • Reddy MP, Sarla N, Siddiq EA (2002). Inter-Simple Sequence Repeat (ISSR) polymorphism and its application in plant breeding. Euphytica.128: 9–17.
  • Schneider A, Molnar I, Molnar L, (2008). Utililisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 163:1-19.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance chromosomal location, population dynamics. Proc. Natl. Acad. Sci. 81: 8014-8018.
  • Sears ER (1956). The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium Biology. 9:1–22.
  • Singh R, Sharma P, Varshney RK, Sharma S, Singh NK (2008). Chickpea improvement: role of wild species and genetic markers. Bio. Genet. Engi. Rev. 25: 267-314.
  • Sofalian O, Validazeh M (2009). Investigation of seed storage proteins in some wild wheat progenitors using SDS-PAGE and ACID-PAGE. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 37 (1): 179-1
  • Van Slageren MW (1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (jaub. and Spach) Eig (poaceae). Wageningen Agricultural University. Wageningen, the Netherland, pp: 94-107.

Assessment of genetic diversity in Aegilops species in North-West of Iran using ISSR marker

Yıl 2013, Cilt: 23 Sayı: 2, 66 - 75, 01.06.2013

Öz

Basit tekrarlı diziler arası polimorfizm (ISSR) ve ASİT-PAGE analizleri İran'ın Kuzey-Batı Aegilops türlerinin akrabalık ilişkileri ve genetik çeşitliliğini değerlendirmek için kullanılmıştır. Altı adet Aegilops türüne [Ae. taucshii (D), Ae. cylindrica (CD), Ae. umbellulata (U), Ae. triuncialis (UC), Ae. biuncialis (UM) ve Ae. crassa (DM)] ait otuz üç aksesyon ISSR çalışmasında kullanılmıştır. Aksesyonlardan on iki tanesi ASİT-PAGE çalışmalarına dahil edilmiştir. On bir adet ISSR primerinden elde edilen 171 adet polimorfik ISSR bandı dendrogramlar oluşturmak için kullanılmıştır. ISSR yönteminde, üzerinde çalışılan Aegilops türleri alt gruplara ayrılmıştır ve ortak genoma sahip türlerin aynı gruplar içerisinde yer aldığı belirlenmiştir. ASİT-PAGE analizi Aegilops aksesyonları içerisinde yüksek oranda polimorfizmi ortaya çıkarmıştır. Bu nedenle, sonuçlar İran'ın Kuzey-Batı Aegilops türleri içerisinde potansiyel bir genetik çeşitlilik olduğunu ve herhangi bir ıslah yaklaşımında bunların yararlı genetik stok olabileceklerini göstermiştir Özellikle, tür içi özel genetik çeşitlilik herhangi bir seleksiyon faaliyetleri için uygun genetik tabanı olabilecektir.

Kaynakça

  • Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002). A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defenserelated genes: insights into cereal chromosome structure and function. Plant Molecular Biology. 48: 767–790.
  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007). Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Springer, Doerdrecht, Netherlands. pp. 83–90.
  • Ciaffi M, Lanfiandra D, Porceddu E, Benedettelli S (1993). Storage protein variation in wild emmer (triticum turgidum ssp. dicoccoides) from Jordan and Turkey. 1. Electrophoretic characterization of genotypes. Theoretical and Applied Genetics. 86: 474-480.
  • Ciaffi M, Lanfiandra D, Porceddu E, Benedettelli S (1993). Storage protein variation in wild emmer (triticum turgidum ssp. dicoccoides) from Jordan and Turkey. 2. Patterns of allele distribution. Theoretical and Applied Genetics. 86: 518-525.
  • Gong, HY, Liu AH, Wang JB (2006). Genomic evolutionary changes in Aegilops allopolyploids revealed by ISSR markers. Acta Phytotaxonomica Sinica. 44: 286–295.
  • Hajjar R, Hodgkin T (2007). The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica. 156:1-13.
  • Ki-Hyun K, Abuhena MK, Kwang-Hyun S, Jong-Soon C, Hwa-Young H, Sun-Hee W (2010). Largescale proteome investigation in wild relatives (A, B and genomes) of wheat. Acta Phytotaxonomica Sinica. 10 (1093):1-8
  • Konstantinos G, Penelope J (2010). Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Molcular Phylogenetics and Evolution. Elsevier. 56: 951-961.
  • Kuraparthy V, Chhuneja P, Dhaliwal SH, Kaur S, Bowden RL, Gill BS (2007). Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics. 114: 1379– 13
  • McIntosh RA, Miller TE, Chapman V (1982). Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondite and Sr34 for resistance to P. graminis tritici. Flanzenzucht. 89:295–306.
  • Metakovsky EV, Novoselskaya AY, Sozinov AA (1984). Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis. Theoretical and Applied Genetics. 69: 31-37.
  • Migdadi HM, Tell AM, Masoud S (2006). Genetic diversity in some Aegilops species in Jordan revealed using RAPD. Genetic Resources Newsletter. 139: 47–52.
  • Mohammadi SA, Prasanna BM (2003). Analysis of genetic diversity in crop plants salient statistical tools and considerations. Crop Science, 43: 1235–1248.
  • Monneveux P, Zaharieva M, Rekika D (2000). The utilization of Triticum and Aegilops species for the improvement of durum wheat. In: Royo, C., Nachit, M.M., Di Fonzo, N., Araus, J.L. (Eds.), Durum Wheat Improvement in the Mediterranean Region: New challenges = L’amélioration du blé dur dans larégion méditerranéenne: Nouveaux défis. CIHEAM-IAMZ, Zaragoza. pp. 71–81. Montes MJ, Andre´s MF, Sin E, Lo´pez-Bran˜a I, Martı´n-Sa´nchez JA, Romero MD, Delibes A (2008). Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars. Genome. 51:315–319.
  • Monte JV, Casanova C, Soler C (1999). Genetic variation in Spanish populations of the genus Aegilops revealed by RAPDs. Agronomie 19 419–427.
  • Nei M (1973). Analysis of genetic diversity in subdivided populations Proc. Natl. Acad. Sci. 70: 332133
  • Nei M (1978). Estimation of average hetrozigosity and genetic distance from a small number of individuals. Genetics. 89: 583-590.
  • Nevo E (1998). Genetic diversity in in wild cereals: regional and local studies and their bearing on conservation ex sito and in situ. Genetic Resourses and Crop Evolution. 45: 355-370.
  • Okuno K, Ebana K, Noov B, Yoshida H (1998). Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genetic Resources and Crop Evolution. 45, 389–394.
  • Reddy MP, Sarla N, Siddiq EA (2002). Inter-Simple Sequence Repeat (ISSR) polymorphism and its application in plant breeding. Euphytica.128: 9–17.
  • Schneider A, Molnar I, Molnar L, (2008). Utililisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 163:1-19.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance chromosomal location, population dynamics. Proc. Natl. Acad. Sci. 81: 8014-8018.
  • Sears ER (1956). The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium Biology. 9:1–22.
  • Singh R, Sharma P, Varshney RK, Sharma S, Singh NK (2008). Chickpea improvement: role of wild species and genetic markers. Bio. Genet. Engi. Rev. 25: 267-314.
  • Sofalian O, Validazeh M (2009). Investigation of seed storage proteins in some wild wheat progenitors using SDS-PAGE and ACID-PAGE. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 37 (1): 179-1
  • Van Slageren MW (1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (jaub. and Spach) Eig (poaceae). Wageningen Agricultural University. Wageningen, the Netherland, pp: 94-107.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

A. JAM Baranduzı Bu kişi benim

O. Sofalıan Bu kişi benim

R. ASGHARI Zakarıa Bu kişi benim

A. Asgharı Bu kişi benim

M. Shokrpour Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 23 Sayı: 2

Kaynak Göster

APA Baranduzı, A. J., Sofalıan, O., Zakarıa, R. A., Asgharı, A., vd. (2013). Assessment of genetic diversity in Aegilops species in North-West of Iran using ISSR marker. Yuzuncu Yıl University Journal of Agricultural Sciences, 23(2), 66-75.

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.