BibTex RIS Cite

Tuz Stresi altında Yetiştirilen Karpuz Fidelerinde İyon Birikim ve Dağıtım Mekanizmalarının((Citrullus lanatus (Thunb.) Mansf.) Belirlenmesi

Year 2013, Volume: 23 Issue: 3, 209 - 214, 01.09.2013

Abstract

The aim of this study was to determine ion accumulation and distribution mechanisms in watermelon. Salt sensitive Golden crown F1 and salt tolerant Midyat genotype Watermelon (Citrullus lanatus (Thunb.) Mansf.) seedlings were grown in Hoagland nutrient solution. When plants had 3-4 true leaves, 100 mM NaCl was applied. Shoot fresh weights, Na+ , K + , Ca +2 ion distribution in root, stem and leaves of the plants subjected to 14 days salt stress were determined. Salt tolerant Midyat genotype had higher shoot fresh weight than salt sensitive Golden crown F variety. Ion (Na+ , K + , Ca +2 ) accumulation in Golden crown F variety root was higher than Midyat genotype.Nevertheless, while Na ion accumulation in the shoot of the Golden Crown Fcultivars were higher, no differences between genotypes were determined for K+ , Ca +2 ions. Na was higher in salt sensitive variety’s leaves, whereas, K+ and Ca+2 ions accumulation was higher in Midyat genotype’s leaves. As a result, it was determined in this study that salt avoidance mechanism worked in watermelon. Additionally, it was observed that watermelon acted to be selective in ion uptake, there was a competition in terms of K+ and Na+ ions uptake and this salt-tolerant genotype had higher K+ accumulation rate. There was an increase in K accumulation in salt stress treated plants. A reverse relationship between K and Na ions was determined in ion distribution among organs. While N accumulation in an organ increased K ion accumulation decreased in that organ, and vice versa. Accumulation of Ca ions increased from root of the plant towards to leaves.

References

  • Caro M, Cruz V, Cuartero J, Estan MT, Bolarin MC (1991). Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant and Soil, 136: 249-255.
  • Cramer GR, Lauchli A, Epstein E (1986). Effects of NaCl and CaCl 2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol., 81:792-797.
  • Cuartero J, Fernandez-Munoz R (1999). Tomato and salinity. Sci. Hort.,78:83-125.
  • Cuartero J, Yeo AR, Flowers TJ (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. 121: 63-69.
  • Dasgan HY, Aktaş H, Abak K, Cakmak I (2002). Determination of screening techniques to salinity in tomatoes and investigation of genotype responses. Plant Science, 163: 695-703.
  • Gabor G, Simon-Sarkadi L, Bekes F, Erdei L (1986). Genotype specific chances in amino acid and polyanime of wheat tissue culture induced by osmotic stress. Advences in Agricutural Biotecnology, 170-176.
  • Hanson AD, Hitz WD (1982). Metabolic responses of mesophytes to plant water deficits: Ann. Rev. Plant Physiol., 33, 163-203.
  • Hasegawa PM, Bressan RA, Handa AV (1986). Cellular mechanisms of salinity tolerance. Hort. Sci., 21: 1317-1324.
  • Hellebust JA (1976). Osmoregulation. Ann. Rev. Plant Physiol., 27: 485-505.
  • Hoagland DR , Arnon DI (1938). The water culture method for growing plants without soil. Circ. Calif. Agr. Exp. Sta., 347-461.
  • Huang J, Redman RE (1995). Solute adjustment to salinity and calcium supply in cultivated and Wild Barley. J. Plant Nutrition, 18: 1371-1389.
  • Joyce PA, Aspinall D, Palley LG (1992). Photosynthesis and the acumulation of proline in responce to water deficit. Aust.J.Plant.Physiol.,19:249-261.
  • Kuşvuran Ş, Yaşar F, Abak K, Ellialtıoğlu Ş (2006). Under salt stress grown melon (Cucumis melo L.) genotypes ion accumulation in leaves and the relationship between salt tolerance. IV. Symposium of vegetable cultivation, 19-22 September 2006, K.Maraş.395-398.
  • Lauchli A (1986). Responses and adaptation of crops to salinity. Acta Hort., 190: 243-246.
  • Lauchli A (1990). Calcium, salinity and plasma membrane. In: calcium in plant growth and development (R.J. Leonard and P.K.Hepler eds), The American Society of Plant Physiologists Rockville, MD., 26-35.
  • Levitt J (1980). Responses of plants to environmental stresses. Vol.II, 2 nd ed. Academic press, New York, pp:60
  • Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, 657-680.
  • Perez-Alfocea F, Estan MT, Caro M, Bolarin MC (1993). Response of tomato cultivars to salinity. Plant Soil. 150:203–211.
  • Poljakoff-Mayber A (1975). Morphological and anatomical changes in plants as response to salinity stress. In: Plant in salinine environments. Pollakoff-Mayber, A. and Gale, J. (eds.) SpringerVerlag, New York, U.S.A. pp.98-117.
  • Rengel Z (1992). The role of calcium in salt toxicity. Plant and Soil., 229-233.
  • Santa-Maria GE, Epstein E (2001). Potassium/ Sodium selectivity in wheat and the amphiploid cross wheat x Lophopyrum elongatum. Plant Sci., 160: 532-534.
  • Soliman MS, Doss M (1992). Salinity and mineral nutrıtıon effects of growth and accumulation of organic ions in two cultivated tomato varietes. J. Plant Nutrition, 15 (12): 2789-2799.
  • Tal M (1983). Selection for stress tolerance. In ‘’Handbook of Plant Cell Culture, Volume 1’’ (D.E. Evans, W.R. Sharp, P.V. Ammirato, Y. Yamada, eds.), Collier Macmillan Publishers, London, 461-4
  • Taleisnik E, Grunberg K (1994). Ion balance in tomato cultivars differing in salt tolerance. I. Sodium and potassium accumulation and fluxes under moderate salinity. Physiologia Plantarum, 92:528-534. Taleisnik E, Peyrano G, Arias C (1997). Respose of Chloris gayana cultivars to salinity. 1. Germination and early vegetative growth. Trop. Grassl. 31: 232-240.
  • Tattini M, Coradeschi MA, Ponzio C, Traversi L (1994). Responses of olive plants to salt stress. Abstracts. XXIV th Int. Hort. Congress, 21-27 August 1994, Kyoto-Japan ISHS.
  • Wolf O, Munns R, Tonnet M, Jeschke WD (1991). The role of the stem in the partitioning of Na + and K + in salt-treated barley. J. of Exp. Bot., 42:278-282.
  • Yang YW, Newton RJ, Miller FR (1990). Salinity tolerance in sorghum. I. Whole plant response to sodium chloride in S.bicolor and S. halepense. Crop Sci., 30: 775-781.
  • Yasar F (2006). Effects of salt stress on ion and lipid peroxidasion content in greenbeans genotypes. Asian Journal of Chemistry, 19, (2), 1165-1169.
  • Yasar F (2003). Some of antioxidant enzyme activity investigation as in vivo and in vitro of eggplant genotypes under salt stres. Yüzüncü Yıl University Inst. of Science, Van, 138 s.
  • Yasar F, Ellialtıoğlu Ş, Özpay T, Üzal Ö (2007). Under salt stress of watermelon (Citrullus lanatus (Thunb.) Mansf.) Identification of genotypic differences. Vth Congress of Horticultural Science, 4-7 September 2007, Erzurum, 67-71.
  • Yaşar F, Özpay T, Üzal Ö , Ellialtıoğlu Ş (2006). Determination the response of watermelon to salt stress IVth Symposium of Vegetable, 19-22 September 2006, K.Maraş, 250-252.
  • Zhang HX, Blumward E (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotecnology. 9:765-768.

Identification of Ion Accumulation and Distribution Mechanisms in Watermelon Seedlings ((Citrullus lanatus (Thunb.) Mansf.) Grown under Salt Stress

Year 2013, Volume: 23 Issue: 3, 209 - 214, 01.09.2013

Abstract

Tuza hassas Golden crown F ve tolerant yerel Midyat genotipine ait karpuz (Citrullus lanatus (Thunb.) Mansf.) fideleri Hoagland besin çözeltisi içerisinde büyütülmüştür. Bitkiler 3-4 gerçek yaprağa sahip iken 100 mM NaCl uygulanmıştır. 14 gün süreyle tuz stresi uygulanan bitkilerin yeşil aksam ağırlıklarına, kök, gövde ve yapraklarındaki Na, K, Ca iyon dağılımlarına bakılmıştır. Çalışmadaki amaç karpuzda iyon birikim ve dağılım mekanizmasını belirlemektir. Tuza toleranslı olan Midyat genotipinin yeşil aksam yaş ağırlığı, hassas olan Golden crown F çeşidine göre daha yüksek çıkmıştır. Ayrıca Golden crown F çeşidinin bitkilerinin köklerindeki iyon birikimleri (Na, K, Ca) Midyat genotipinden daha yüksek bulunmuştur. Fakat Golden crown F çeşidinin gövde kısmında biriktirdiği Na iyonu yüksek çıkarken, K+ , Ca +2 iyonları bakımından genotipler arasında fark bulunmamıştır. Yapraklarda ise Na+ iyonu yine hassas olan çeşitte yüksek, toleranslı Midyat genotipinde düşük bulunmuş, Midyat genotipinde K + ve Ca iyonları birikimi daha yüksek çıkmıştır. Sonuç olarak bu çalışmada gözlemlenen, karpuzda tuzdan sakınım mekanizmasının çalıştığıdır. Ayrıca, karpuzun iyon alımında seçici davrandığını, K ile Na arasında alınım bakımından bir rekabetin olduğunu ve tolerant genotiplerin yüksek oranda K tutma kapasitesine sahip olduklarını gösterdiği gibi, tuz stresi uygulanmış bitkilerin K birikimlerinde artışın olduğu görülmüştür. Organlara göre iyon dağılımında, Na iyonu ile K iyonu zıt ilişki göstermiştir. Na iyonunun arttığı organda K azalırken, Na’nın az biriktiği organda K iyonu artmıştır. Ca iyonun bitkinin köklerinden yapraklarına doğru birikimi artmıştır.

References

  • Caro M, Cruz V, Cuartero J, Estan MT, Bolarin MC (1991). Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant and Soil, 136: 249-255.
  • Cramer GR, Lauchli A, Epstein E (1986). Effects of NaCl and CaCl 2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol., 81:792-797.
  • Cuartero J, Fernandez-Munoz R (1999). Tomato and salinity. Sci. Hort.,78:83-125.
  • Cuartero J, Yeo AR, Flowers TJ (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. 121: 63-69.
  • Dasgan HY, Aktaş H, Abak K, Cakmak I (2002). Determination of screening techniques to salinity in tomatoes and investigation of genotype responses. Plant Science, 163: 695-703.
  • Gabor G, Simon-Sarkadi L, Bekes F, Erdei L (1986). Genotype specific chances in amino acid and polyanime of wheat tissue culture induced by osmotic stress. Advences in Agricutural Biotecnology, 170-176.
  • Hanson AD, Hitz WD (1982). Metabolic responses of mesophytes to plant water deficits: Ann. Rev. Plant Physiol., 33, 163-203.
  • Hasegawa PM, Bressan RA, Handa AV (1986). Cellular mechanisms of salinity tolerance. Hort. Sci., 21: 1317-1324.
  • Hellebust JA (1976). Osmoregulation. Ann. Rev. Plant Physiol., 27: 485-505.
  • Hoagland DR , Arnon DI (1938). The water culture method for growing plants without soil. Circ. Calif. Agr. Exp. Sta., 347-461.
  • Huang J, Redman RE (1995). Solute adjustment to salinity and calcium supply in cultivated and Wild Barley. J. Plant Nutrition, 18: 1371-1389.
  • Joyce PA, Aspinall D, Palley LG (1992). Photosynthesis and the acumulation of proline in responce to water deficit. Aust.J.Plant.Physiol.,19:249-261.
  • Kuşvuran Ş, Yaşar F, Abak K, Ellialtıoğlu Ş (2006). Under salt stress grown melon (Cucumis melo L.) genotypes ion accumulation in leaves and the relationship between salt tolerance. IV. Symposium of vegetable cultivation, 19-22 September 2006, K.Maraş.395-398.
  • Lauchli A (1986). Responses and adaptation of crops to salinity. Acta Hort., 190: 243-246.
  • Lauchli A (1990). Calcium, salinity and plasma membrane. In: calcium in plant growth and development (R.J. Leonard and P.K.Hepler eds), The American Society of Plant Physiologists Rockville, MD., 26-35.
  • Levitt J (1980). Responses of plants to environmental stresses. Vol.II, 2 nd ed. Academic press, New York, pp:60
  • Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, 657-680.
  • Perez-Alfocea F, Estan MT, Caro M, Bolarin MC (1993). Response of tomato cultivars to salinity. Plant Soil. 150:203–211.
  • Poljakoff-Mayber A (1975). Morphological and anatomical changes in plants as response to salinity stress. In: Plant in salinine environments. Pollakoff-Mayber, A. and Gale, J. (eds.) SpringerVerlag, New York, U.S.A. pp.98-117.
  • Rengel Z (1992). The role of calcium in salt toxicity. Plant and Soil., 229-233.
  • Santa-Maria GE, Epstein E (2001). Potassium/ Sodium selectivity in wheat and the amphiploid cross wheat x Lophopyrum elongatum. Plant Sci., 160: 532-534.
  • Soliman MS, Doss M (1992). Salinity and mineral nutrıtıon effects of growth and accumulation of organic ions in two cultivated tomato varietes. J. Plant Nutrition, 15 (12): 2789-2799.
  • Tal M (1983). Selection for stress tolerance. In ‘’Handbook of Plant Cell Culture, Volume 1’’ (D.E. Evans, W.R. Sharp, P.V. Ammirato, Y. Yamada, eds.), Collier Macmillan Publishers, London, 461-4
  • Taleisnik E, Grunberg K (1994). Ion balance in tomato cultivars differing in salt tolerance. I. Sodium and potassium accumulation and fluxes under moderate salinity. Physiologia Plantarum, 92:528-534. Taleisnik E, Peyrano G, Arias C (1997). Respose of Chloris gayana cultivars to salinity. 1. Germination and early vegetative growth. Trop. Grassl. 31: 232-240.
  • Tattini M, Coradeschi MA, Ponzio C, Traversi L (1994). Responses of olive plants to salt stress. Abstracts. XXIV th Int. Hort. Congress, 21-27 August 1994, Kyoto-Japan ISHS.
  • Wolf O, Munns R, Tonnet M, Jeschke WD (1991). The role of the stem in the partitioning of Na + and K + in salt-treated barley. J. of Exp. Bot., 42:278-282.
  • Yang YW, Newton RJ, Miller FR (1990). Salinity tolerance in sorghum. I. Whole plant response to sodium chloride in S.bicolor and S. halepense. Crop Sci., 30: 775-781.
  • Yasar F (2006). Effects of salt stress on ion and lipid peroxidasion content in greenbeans genotypes. Asian Journal of Chemistry, 19, (2), 1165-1169.
  • Yasar F (2003). Some of antioxidant enzyme activity investigation as in vivo and in vitro of eggplant genotypes under salt stres. Yüzüncü Yıl University Inst. of Science, Van, 138 s.
  • Yasar F, Ellialtıoğlu Ş, Özpay T, Üzal Ö (2007). Under salt stress of watermelon (Citrullus lanatus (Thunb.) Mansf.) Identification of genotypic differences. Vth Congress of Horticultural Science, 4-7 September 2007, Erzurum, 67-71.
  • Yaşar F, Özpay T, Üzal Ö , Ellialtıoğlu Ş (2006). Determination the response of watermelon to salt stress IVth Symposium of Vegetable, 19-22 September 2006, K.Maraş, 250-252.
  • Zhang HX, Blumward E (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotecnology. 9:765-768.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

F. Yasar This is me

O. Uzal This is me

O. Yasar This is me

Publication Date September 1, 2013
Published in Issue Year 2013 Volume: 23 Issue: 3

Cite

APA Yasar, F., Uzal, O., & Yasar, O. (2013). Identification of Ion Accumulation and Distribution Mechanisms in Watermelon Seedlings ((Citrullus lanatus (Thunb.) Mansf.) Grown under Salt Stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 23(3), 209-214.
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.