BibTex RIS Cite

Zinc Application Methods Affect Agronomy Traits and Grain Micronutrients in Bread and Durum Wheat under Zinc-Deficient Calcareous Soil

Year 2016, Volume: 26 Issue: 2, 202 - 214, 31.05.2016

Abstract

Zn deficiency is a worldwide nutritional constraint in crop production particularly in cereals growing calcareous soils. In order to study the effect of different zinc-sulfate application methods on grain yield, agronomy traits and grain micronutrients of wheat, a pot experiment was carried out in a calcareous soil in factorial experiment at randomized complete block design (RCBD) with 30 treatments (6 Zn application methods, and 5 wheat genotypes) in four replications. Treatments were the first factor included six levels of applied Zn were (1) control (non Zn application), (2) soil application (5 mg Zn kg-1 soil), (3) seed application (3% (w/v) Zn for 1 kg seed), (4) foliar application at stem elongation and early grain filling stages (zinc sulfate was sprayed at a rate of 0.44 g Zn l-1, (5) seed spray + foliar (combination of methods 3 and 4) and (6) soil + foliar (combination of methods 2 and 4), and also the second factor was five wheat genotypes including two spring bread wheat (‘Pishtaz’ and ‘Sivand’) and three spring durum wheat (‘Diyarbakır-81’, ‘Bisu-1’ and line ‘45558’). Both soil and foliar Zinc application methods could improve yield and grain Zn concentration; however, generally bread wheat had the better agronomic traits, grain yield as well as Zn, Fe, Cu and Mn concentrations in grain compared with durum wheat. The foliar Zn application was more effective in increasing Zn, Fe, Mn and ascorbic acid concentrations in grain. Different Zn treatments methods significantly increased Zn concentration and decreased phytate content of the wheat grain, as well as decreased grain phytate/Zn molar ratios. Thus, it seems that soil and foliar Zn application would improve the quantity and quality of the wheat yield in Zn-deficient soils. Therefore, fertilizer strategy (e.g., agronomic biofortification) appears as short-term solution to alleviate malnutrition problem.

References

  • Abd El-Hady, B.A., (2007). Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water. Journal of Applied Sciences Research. 3(6), 431-436.
  • Abdoli, M., Esfandiari, E., Mousavi, S.B., Sadeghzadeh, B., (2014). Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). Azarian Journal of Agriculture. 1(1), 11-17.
  • Abdoli, M., Saeidi, M., Azhand, M., Jalali-Honarmand, S., Esfandiari, E., Shekari, F., (2013). The effects of different levels of salinity and indole-3-acetic acid (IAA) on early growth and germination of wheat seedling. Journal of Stress Physiology and Biochemistry. 9(4), 329-338.
  • Alloway, B.J., (2004). Zinc in soils and crop nutrition. IZA Publications, Brussels.
  • Alloway, B.J., (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health. 31, 537-548.
  • Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P.C., Shankhdhar, S.C., (2013). Improving nutritional quality of wheat through soil and foliar zinc application. Plant, Soil and Environment. 59, 348-352.
  • Brinch-Pederson, H., Borg, S., Tauris, B., Holm, P.B., (2007). Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. Journal of Cereal Science. 46, 308-326.
  • Cakmak, I., (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil. 302, 1-17.
  • Cakmak, I., Ekiz, H., Yilmaz, A., Torun, B., Köleli, N., Gültekin, I., Alkan, A., Eker, S., (1997). Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant and Soil. 188, 1-10.
  • Cakmak, I., Kalayci, M., Kaya, Y., Torun, A.A., Aydin, N., Wang, Y., Arisoy, Z., Erdem, H., Yazici, A., Gokmen, O., Ozturk, L., Horst, W.J., (2010b). Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry. 58, 9092-9102.
  • Cakmak, I., Pfeiffer, W.H., McClafferty, B., (2010a). Biofortification of durum wheat with zinc and iron. Cereal Chemistry Journal. 87, 10-20.
  • Chapman, H.D., Pratt, P.F., (1961). Methods of Analysis for Soil, Plant and Water. Riverside, CA: Division of Agriculture Science, University of California.
  • Fageria, N.K., Baligar, V.C., (2003). Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. Journal of Plant Nutrition. 26, 1315-1333.
  • Gomaa, M.A., Radwan, F.I., Kandil, E.E., El-Zweek, S.M.A., (2015). Effect of some macro and micronutrients application methods on productivity and quality of wheat (Triticum aestivum L.). Middle East Journal of Agriculture Research. 4, 1-11.
  • Graham, R.D., (2008). Micronutrient deficiencies in crops and their global significance. In: Alloway, B.J. (Ed.), Micronutrient deficiencies in global crop production. Springer, Dordrecht. pp: 41-61.
  • Hambidge, M., (2000). Human zinc deficiency. Journal of Nutrition. 130, 1344s-1349s.
  • Haslett, B.S., Reid, R.J., Rengel, Z., (2001). Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Annals of Botany. 87, 379-386.
  • Haug, W., Lantzsch, H., (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture. 34, 1423-1424.
  • Hurrell, R.F., (2001). Modifying the composition of plant foods for better human health. In: Nösberger, J., Geiger, H.H., Struik, P.C. (Eds.), Crop Science: Progress and Prospects. CABI publishing, Bristol, pp. 53-64.
  • Hussain, S., Aamer Maqsood, M., Rengel, Z., Aziz, T., (2012). Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil. 361, 279-290.
  • Imran, M., Kanwal, S., Hussain, S., Aziz, T., Maqsood, M.A., (2015). Efficacy of zinc application methods for concentration and estimated bioavailability of zinc in grains of rice grown on a calcareous soil. Pakistan Journal of Agricultural Sciences. 52(1), 169-175.
  • Johns, T., Enzaguirre, P.B., (2007). Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition. Food Policy Journal. 32, 1-24.
  • Khoshgoftarmanesh, A.H., SanaeiOstovar, A., Sadrarhami, A., Chaney, R., (2013). Effect of tire rubber ash and zinc sulfate on yield and grain zinc and cadmium concentrations of different zinc-deficiency tolerance wheat cultivars under field conditions. European Journal of Agronomy. 49, 42-49.
  • Kutman, U.B., Yildiz, B., Cakmak, I., (2011). Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science. 53, 118-125.
  • Lindsay, W.L., Norvell, W.A., (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42, 421-428.
  • Lonergan, P.F., Pallotta, M.A., Lorimer, M., Paull, J.G., Barker, S.J., Graham, R.D., (2009). Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytologist. 184, 168-179.
  • Lucca, P., Poletti, S., Sautter, C., (2006). Genetic engineering approaches to enrich rice with iron and vitamin A. Physiologia Plantarum. 126, 291-303.
  • Mabesa, R.L., Impa, S.M., Grewal, D., Johnson-Beebout, S.E., (2013). Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Research. 149, 223-233.
  • Malakouti, M.J., (2007). Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology. 1(1), 1-12.
  • Marschner, H., (1993). Zinc uptake from soils. In: Robinson AD (Ed.), Zinc in soils and plants. Dordrecht: Kluwer Academic Publishers, pp: 59-77.
  • Marschner, H., (1995). Mineral nutrition of higher plants. 2nd Addition Academic Press Inc. pp. 890.
  • Mathpal, B., Srivastava, P.C., Shankhdhar, D., Shankhdhar, S.C., (2015). Zinc enrichment in wheat genotypes under various methods of zinc application. Plant, Soil and Environment. 61(4), 171–175.
  • Mayer, J.E., Pfeiffer, W.H., Beyer, P., (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology. 11, 166-170.
  • Mohr, H., Schopfer, P., (1994). Plant Physiology. Springer-Verlag, Berlin, Heidelberg, New York.
  • Movahhedy-Dehnavy, M., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., (2009). Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L.) grown under water deficit stress. Industrial Crops and Products. 30, 82-92.
  • Naik, S.K. Das, D.K., (2008). Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.). Nutrient Cycling in Agroecosystems. 81, 219-227.
  • Nasiri, Y., Zehtab-Salmasi, S., Nasrullahzadeh, S., Najafi, N., Ghassemi-Golezani, K., (2010). Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). Journal of Medicinal Plants Research. 4(17), 1733-1737.
  • Nolan, K.B., Duffin, P.A., McWeeny, D.J., (1987). Effects of phytate on mineral bioavailability. In vitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. Journal of the Science of Food and Agriculture. 40, 79-85.
  • Okamura, M., (1980). An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clinica Chimica Acta. 103(3), 259-268.
  • Phattarakul, N., Rerkasem , B., Li, L.J., Wu, L.H., Zou, C.Q., Ram, H., Sohu, V.S., Kang, B.S., Surek, H., Kalayci, M., Yazici, A., Zhang, F.S., Cakmak, I., (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil. 361, 131-141.
  • Raboy, V., (2001). Seeds for a better future: ‘Low phytate’ grains help to overcome malnutrition and reduce pollution. Trends in Plant Science. 6, 458-462.
  • Rafique, E., Yousra, M., Mahmood-Ul-Hassan, M., Sarwar, S., Tabassam, T., Choudhary, T.K., (2015). Zinc application affects tissue zinc concentration and seed yield of pea (Pisum sativum L.). Pedosphere. 25(2), 275-281.
  • Rehman, H., Aziz, T., Farooq, M., Wakeel, A., Rengel, Z., (2012). Zinc nutrition in rice production systems: A review. Plant and Soil. 361, 203-226.
  • Rengel, Z., Batten, G.D., Crowley, D.E., (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research. 60, 27-40.
  • Sadeghzadeh, B., (2013). A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition. 13, 905-927.
  • Sadeghzadeh, B., Rengel, Z., Li, C., (2009). Differential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solution. Journal of Plant Nutrition. 32, 1744-1767.
  • Sadeghzadeh, B., Rengel, Z., Li, C., (2015). Quantitative trait loci (QTL) of seed Zn accumulation in barley population Clipper х Sahara. Journal of Plant Nutrition. 38(11), 1672-1684.
  • Sadeghzadeh, B., Rengel, Z., Li, C., Yang, H., (2010). Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley. Molecular Breeding. 25, 167-177.
  • Simic, D., Sudar, R., Ledencan, T., Jambrovic, A., Zdunic, Z., Brkic, I., Kovacevic, V., (2009). Genetic variation of bioavailable iron and zinc in grain of a maize population. Journal of Cereal Science. 50, 392-397.
  • Sims, J.T., Johnson, G.V., (1991). Micronutrients soil tests. In: Mordcvedt, J.J., Cox, F.R., Shuman, L.M., Welch, R.M. (Eds.), Micronutrients in Agriculture. SSSA Book Series No. 4, Madison, WI. pp: 427-476.
  • Stalin, P., Das, T., Muthumanickam, D., Chitdeshwari, T., Velu, V., (2011). Foliar nutrition of rice to enhance micronutrient concentration in grains. International Rice Research Notes (0117-4185), 1-6.
  • Stephan, U.W., Scholz, G., (1993). Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiologia Plantarum. 88, 522-529.
  • Thimmiah, S.R., (2009). Standard Methods of Biochemical Analysis. Kalyani Publishers, New Delhi, pp. 545.
  • Turnlund, J.R., King, J.C., Keyes, W.R., Gong, B., Michel, M.C., (1984). A stable isotope study of zinc absorption in young men: effects of phytate and α-cellulose. The American Journal of Clinical Nutrition. 40, 1071-1077.
  • Vallee, B.L., Falchuk, K.H., (1993). The biochemical basis of zinc physiology. Physiological Reviews. 73, 79-118.
  • Weaver, C.M., Kannan, S., (2002). Phytate and mineral bioavailability. In: Reddy, N.R., Sathe, S.K. (Eds.), Food phytate. CRC Press, Boca Raton, pp: 211-223.
  • Welch, R.M., Graham, R.D., (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany. 55, 353-364.
  • White, P.J., Broadley, M.R., (2009). Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium, and iodine. New Phytologist. 182(1), 49-84.
  • World Health Organization., (2002). World Health Report 2002: Reducing Risks, Promoting Healthy Life. http://www.who.int/whr/2002/en/whr02_en.pdf (retrieved 13.07.2010).
  • Zeb, T., Arif, M., (2008). Effect of zinc application methods on yield and yield components of maize. Department of Agronomy, NWFP Agricultural. University, Peshawar, Pakistan.
  • Zhang, Y., Shi, R., Rezaul, K.M.D., Zhang, F., Zou, C., (2010). Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry. 58, 12268-12274.

Çinko Uygulama Yöntemlerinin Çinko-Eksikliği Olan Kalkerli Topraklarda Ekmeklik ve Makarnalık Buğdayın Agronomik Özellikleri ve Tane Mikrobesin Maddeleri Üzerine Etkisi

Year 2016, Volume: 26 Issue: 2, 202 - 214, 31.05.2016

Abstract

Zn eksikliği, bitkisel üretimde ve özellikle kireçli topraklarda büyüyen tahıllarda dünya çapında bir besin kısıtlamasıdır. Farklı çinko sülfat uygulama yöntemlerinin buğday tahıl verimi, agronomik özellikleri ve tahıl mikrobesin maddeleri üzerine etkisini incelemek amacıyla, kireçli toprakta bir saksı denemesi, tesadüf blokları faktöryel deneme desenine göre dört tekrarlamalı, 30 uygulamalı (6 Zn uygulama yöntemi ve 5 buğday genotipi) olarak gerçekleştirilmiştir. Uygulamalarda birinci faktör olarak 6 adet Zn uygulama yöntemi [(1) kontrol (Zn uygulaması yok), (2) toprak uygulaması (5 mg Zn/kg toprak), (3) tohum uygulaması (%3 (w/v) Zn/1kg tohum, (4) kök uzatma ve erken tane dolum aşamasında yaprak gübrelemesi (çinko sülfat 0.44 g Zn/L oranında püskürtme), (5) tohum uygulaması + yaprak gübrelemesi (3. ve 4. uygulamaların kombinasyonu) ve (6) toprak uygulaması + yaprak gübrelemesi (2. ve 4. uygulamaların kombinasyonu)] ve ikinci faktör olarak 5 adet buğday genotipi [iki ilkbahar ekmeklik buğdayı ('Pishtaz' ve 'Sivand') ve üç ilkbahar makarnalık buğday ('Diyarbakır-81’, ‘Bisu-1’ ve ‘45558’ hattı] ele alınmıştır. Hem toprak hem de yaprak çinko uygulama yöntemleri verim ve tane Zn konsantrasyonu artırmıştır; bununla birlikte, genel olarak ekmeklik buğdaylar, makarnalık buğdaylara göre tane Zn, Fe, Cu ve Mn içeriklerinin yanı sıra agronomik özellikler ve verim bakımından daha iyi sonuçlar vermiştir. Yapraktan Zn uygulaması, tane Zn, Fe, Mn ve askorbik asit konsantrasyonlarının artırılmasında daha etkili olmuştur. Farklı Zn uygulama yöntemleri buğday tanelerinde belirgin bir şekilde Zn konsantrasyonu artırırken, fitik asit içeriğinin azalmasına; dolayısıyla da tanede fitik asit/Zn oranının azalmasına yol açmıştır. Sonuç olarak, toprak ve yapraktan Zn uygulaması, Zn eksikliği olan topraklarda buğday verim miktarını ve kalitesini artırabilmektedir. Bu nedenle, gübreleme stratejisi (tarımsal besin zenginleştirme) kötü beslenme sorunu hafifletmek için kısa vadeli bir çözüm olarak ortaya çıkmaktadır.

References

  • Abd El-Hady, B.A., (2007). Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water. Journal of Applied Sciences Research. 3(6), 431-436.
  • Abdoli, M., Esfandiari, E., Mousavi, S.B., Sadeghzadeh, B., (2014). Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). Azarian Journal of Agriculture. 1(1), 11-17.
  • Abdoli, M., Saeidi, M., Azhand, M., Jalali-Honarmand, S., Esfandiari, E., Shekari, F., (2013). The effects of different levels of salinity and indole-3-acetic acid (IAA) on early growth and germination of wheat seedling. Journal of Stress Physiology and Biochemistry. 9(4), 329-338.
  • Alloway, B.J., (2004). Zinc in soils and crop nutrition. IZA Publications, Brussels.
  • Alloway, B.J., (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health. 31, 537-548.
  • Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P.C., Shankhdhar, S.C., (2013). Improving nutritional quality of wheat through soil and foliar zinc application. Plant, Soil and Environment. 59, 348-352.
  • Brinch-Pederson, H., Borg, S., Tauris, B., Holm, P.B., (2007). Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. Journal of Cereal Science. 46, 308-326.
  • Cakmak, I., (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil. 302, 1-17.
  • Cakmak, I., Ekiz, H., Yilmaz, A., Torun, B., Köleli, N., Gültekin, I., Alkan, A., Eker, S., (1997). Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant and Soil. 188, 1-10.
  • Cakmak, I., Kalayci, M., Kaya, Y., Torun, A.A., Aydin, N., Wang, Y., Arisoy, Z., Erdem, H., Yazici, A., Gokmen, O., Ozturk, L., Horst, W.J., (2010b). Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry. 58, 9092-9102.
  • Cakmak, I., Pfeiffer, W.H., McClafferty, B., (2010a). Biofortification of durum wheat with zinc and iron. Cereal Chemistry Journal. 87, 10-20.
  • Chapman, H.D., Pratt, P.F., (1961). Methods of Analysis for Soil, Plant and Water. Riverside, CA: Division of Agriculture Science, University of California.
  • Fageria, N.K., Baligar, V.C., (2003). Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. Journal of Plant Nutrition. 26, 1315-1333.
  • Gomaa, M.A., Radwan, F.I., Kandil, E.E., El-Zweek, S.M.A., (2015). Effect of some macro and micronutrients application methods on productivity and quality of wheat (Triticum aestivum L.). Middle East Journal of Agriculture Research. 4, 1-11.
  • Graham, R.D., (2008). Micronutrient deficiencies in crops and their global significance. In: Alloway, B.J. (Ed.), Micronutrient deficiencies in global crop production. Springer, Dordrecht. pp: 41-61.
  • Hambidge, M., (2000). Human zinc deficiency. Journal of Nutrition. 130, 1344s-1349s.
  • Haslett, B.S., Reid, R.J., Rengel, Z., (2001). Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Annals of Botany. 87, 379-386.
  • Haug, W., Lantzsch, H., (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture. 34, 1423-1424.
  • Hurrell, R.F., (2001). Modifying the composition of plant foods for better human health. In: Nösberger, J., Geiger, H.H., Struik, P.C. (Eds.), Crop Science: Progress and Prospects. CABI publishing, Bristol, pp. 53-64.
  • Hussain, S., Aamer Maqsood, M., Rengel, Z., Aziz, T., (2012). Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil. 361, 279-290.
  • Imran, M., Kanwal, S., Hussain, S., Aziz, T., Maqsood, M.A., (2015). Efficacy of zinc application methods for concentration and estimated bioavailability of zinc in grains of rice grown on a calcareous soil. Pakistan Journal of Agricultural Sciences. 52(1), 169-175.
  • Johns, T., Enzaguirre, P.B., (2007). Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition. Food Policy Journal. 32, 1-24.
  • Khoshgoftarmanesh, A.H., SanaeiOstovar, A., Sadrarhami, A., Chaney, R., (2013). Effect of tire rubber ash and zinc sulfate on yield and grain zinc and cadmium concentrations of different zinc-deficiency tolerance wheat cultivars under field conditions. European Journal of Agronomy. 49, 42-49.
  • Kutman, U.B., Yildiz, B., Cakmak, I., (2011). Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science. 53, 118-125.
  • Lindsay, W.L., Norvell, W.A., (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42, 421-428.
  • Lonergan, P.F., Pallotta, M.A., Lorimer, M., Paull, J.G., Barker, S.J., Graham, R.D., (2009). Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytologist. 184, 168-179.
  • Lucca, P., Poletti, S., Sautter, C., (2006). Genetic engineering approaches to enrich rice with iron and vitamin A. Physiologia Plantarum. 126, 291-303.
  • Mabesa, R.L., Impa, S.M., Grewal, D., Johnson-Beebout, S.E., (2013). Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Research. 149, 223-233.
  • Malakouti, M.J., (2007). Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology. 1(1), 1-12.
  • Marschner, H., (1993). Zinc uptake from soils. In: Robinson AD (Ed.), Zinc in soils and plants. Dordrecht: Kluwer Academic Publishers, pp: 59-77.
  • Marschner, H., (1995). Mineral nutrition of higher plants. 2nd Addition Academic Press Inc. pp. 890.
  • Mathpal, B., Srivastava, P.C., Shankhdhar, D., Shankhdhar, S.C., (2015). Zinc enrichment in wheat genotypes under various methods of zinc application. Plant, Soil and Environment. 61(4), 171–175.
  • Mayer, J.E., Pfeiffer, W.H., Beyer, P., (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology. 11, 166-170.
  • Mohr, H., Schopfer, P., (1994). Plant Physiology. Springer-Verlag, Berlin, Heidelberg, New York.
  • Movahhedy-Dehnavy, M., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., (2009). Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L.) grown under water deficit stress. Industrial Crops and Products. 30, 82-92.
  • Naik, S.K. Das, D.K., (2008). Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.). Nutrient Cycling in Agroecosystems. 81, 219-227.
  • Nasiri, Y., Zehtab-Salmasi, S., Nasrullahzadeh, S., Najafi, N., Ghassemi-Golezani, K., (2010). Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). Journal of Medicinal Plants Research. 4(17), 1733-1737.
  • Nolan, K.B., Duffin, P.A., McWeeny, D.J., (1987). Effects of phytate on mineral bioavailability. In vitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. Journal of the Science of Food and Agriculture. 40, 79-85.
  • Okamura, M., (1980). An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clinica Chimica Acta. 103(3), 259-268.
  • Phattarakul, N., Rerkasem , B., Li, L.J., Wu, L.H., Zou, C.Q., Ram, H., Sohu, V.S., Kang, B.S., Surek, H., Kalayci, M., Yazici, A., Zhang, F.S., Cakmak, I., (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil. 361, 131-141.
  • Raboy, V., (2001). Seeds for a better future: ‘Low phytate’ grains help to overcome malnutrition and reduce pollution. Trends in Plant Science. 6, 458-462.
  • Rafique, E., Yousra, M., Mahmood-Ul-Hassan, M., Sarwar, S., Tabassam, T., Choudhary, T.K., (2015). Zinc application affects tissue zinc concentration and seed yield of pea (Pisum sativum L.). Pedosphere. 25(2), 275-281.
  • Rehman, H., Aziz, T., Farooq, M., Wakeel, A., Rengel, Z., (2012). Zinc nutrition in rice production systems: A review. Plant and Soil. 361, 203-226.
  • Rengel, Z., Batten, G.D., Crowley, D.E., (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research. 60, 27-40.
  • Sadeghzadeh, B., (2013). A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition. 13, 905-927.
  • Sadeghzadeh, B., Rengel, Z., Li, C., (2009). Differential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solution. Journal of Plant Nutrition. 32, 1744-1767.
  • Sadeghzadeh, B., Rengel, Z., Li, C., (2015). Quantitative trait loci (QTL) of seed Zn accumulation in barley population Clipper х Sahara. Journal of Plant Nutrition. 38(11), 1672-1684.
  • Sadeghzadeh, B., Rengel, Z., Li, C., Yang, H., (2010). Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley. Molecular Breeding. 25, 167-177.
  • Simic, D., Sudar, R., Ledencan, T., Jambrovic, A., Zdunic, Z., Brkic, I., Kovacevic, V., (2009). Genetic variation of bioavailable iron and zinc in grain of a maize population. Journal of Cereal Science. 50, 392-397.
  • Sims, J.T., Johnson, G.V., (1991). Micronutrients soil tests. In: Mordcvedt, J.J., Cox, F.R., Shuman, L.M., Welch, R.M. (Eds.), Micronutrients in Agriculture. SSSA Book Series No. 4, Madison, WI. pp: 427-476.
  • Stalin, P., Das, T., Muthumanickam, D., Chitdeshwari, T., Velu, V., (2011). Foliar nutrition of rice to enhance micronutrient concentration in grains. International Rice Research Notes (0117-4185), 1-6.
  • Stephan, U.W., Scholz, G., (1993). Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiologia Plantarum. 88, 522-529.
  • Thimmiah, S.R., (2009). Standard Methods of Biochemical Analysis. Kalyani Publishers, New Delhi, pp. 545.
  • Turnlund, J.R., King, J.C., Keyes, W.R., Gong, B., Michel, M.C., (1984). A stable isotope study of zinc absorption in young men: effects of phytate and α-cellulose. The American Journal of Clinical Nutrition. 40, 1071-1077.
  • Vallee, B.L., Falchuk, K.H., (1993). The biochemical basis of zinc physiology. Physiological Reviews. 73, 79-118.
  • Weaver, C.M., Kannan, S., (2002). Phytate and mineral bioavailability. In: Reddy, N.R., Sathe, S.K. (Eds.), Food phytate. CRC Press, Boca Raton, pp: 211-223.
  • Welch, R.M., Graham, R.D., (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany. 55, 353-364.
  • White, P.J., Broadley, M.R., (2009). Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium, and iodine. New Phytologist. 182(1), 49-84.
  • World Health Organization., (2002). World Health Report 2002: Reducing Risks, Promoting Healthy Life. http://www.who.int/whr/2002/en/whr02_en.pdf (retrieved 13.07.2010).
  • Zeb, T., Arif, M., (2008). Effect of zinc application methods on yield and yield components of maize. Department of Agronomy, NWFP Agricultural. University, Peshawar, Pakistan.
  • Zhang, Y., Shi, R., Rezaul, K.M.D., Zhang, F., Zou, C., (2010). Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry. 58, 12268-12274.
There are 61 citations in total.

Details

Journal Section Articles
Authors

Majid Abdolı

Ezatollah Esfandıarı

Behzad Sadeghzadeh This is me

Seyed-Bahman Mousavı This is me

Publication Date May 31, 2016
Published in Issue Year 2016 Volume: 26 Issue: 2

Cite

APA Abdolı, M., Esfandıarı, E., Sadeghzadeh, B., Mousavı, S.-B. (2016). Zinc Application Methods Affect Agronomy Traits and Grain Micronutrients in Bread and Durum Wheat under Zinc-Deficient Calcareous Soil. Yuzuncu Yıl University Journal of Agricultural Sciences, 26(2), 202-214.
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.