Research Article
BibTex RIS Cite

Using Zero- Inflated Generalized Poisson Regression in Modelling of Count Data

Year 2017, Volume: 27 Issue: 1, 109 - 117, 31.03.2017
https://doi.org/10.29133/yyutbd.285706

Abstract

In this study zero-inflated generalized Poisson
reg
ression was applied to the modelling of mite
numbers data based on count. The subjects of the zero-inflated generalized
Poisson regression are three parameters as mean, overdispersion and
zero-inflated dispersion. The
overdispersion and zero-inflated dispersion
levels range was obtained to be
quite high. However, it was found that zero-inflated data and
overdispersion had an important effect on mite counts (p < 0.01).
It was obtained that 36% (130 observations) of the total numbers of mite had
zero values. The effects of all independent variables were found to be
statistically significant on mite counts (p < 0.05).
The results showed that the
differences among regions and
varieties regarding the mite counts were statistically significant
(p < 0.01).    

References

  • Böhning D (1998). Zero- Inflated Poisson Models and C.A.MAN: A Tutorial Collection of Evidence. Biometrical Journal, 40(7): 833-843.
  • Consul P, Famoye F (1992). Generalized Poisson regression model. Comn. Statist. Theory Methods, 21(1): 89–109.
  • Cox R (1983). Some Remarks on Overdispersion. Biometrika, 70: 269-274.
  • Czado C, Erhardt V, Min A, Wagner S (2007). Dispersion and zero-inflation level applied to patent outsourcing rates Zero-inflated generalized Poisson models with regression effects on the mean. Statistical Modelling, 7(2): 125-153.
  • Famoye F, Singh K.P (2003). On inflated generalized Poisson regression models. Advanced Applied Statistics, 3(2): 145–158.
  • Famoye F, Karan P.S (2006). Zero- inflated generalized Poisson regression model with an application to domestic violence data. Journal of Data Science, 5(4): 117-130.
  • Kasap İ (2010). Seasonal Population Development of Spider Mites (Acari: Tetranychidae) and Their Predators in Sprayed and Unsprayed Apple Orchards in Van, Turkey. XIII International Congress of Acarology | Recife, Pernambuco, Brazil – August 23-27, 2010.
  • Lambert D (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1): 1-13.
  • Luo J, Qu Y (2013). Analysis of hypoglycemic events using negative binomial models. Pharm Stat.,12(4):233-42.
  • McCullagh P, Nelder J.A (1989). Generalized Linear Models. Second Edition, London, UK, Chapmann and Hall.
  • Ridout M, Hinde J, Demetrio C.G.B (2001). A score test for a zero-inflated Poisson regression model against zero-inflated negative binomial alteratves. Biometrics. 57: 219-233.
  • Yeşilova A, Özgökçe, M.S, Atlıhan R, Karaca İ, Özgökçe F, Yıldız Ş, Kaya Y (2011). Sıfır değer ağırlıklı genelleştirilmiş Poisson regresyonu yardımıyla Van Gölü’nde Notonecta viridis Delcourt, 1909 (Hemiptera: Notonectidae)’in populasyon değişimi üzerinde fiziko-kimyasal çevresel koşulların etkilerinin araştırılması. Turkish Journal of Entomology, 35(2): 325-338.
  • Zamani H, Ismail N (2014). Functional form for the zero-inflated generalized Poisson regression model. Communication in Statistics-Theory and Methods, 43(3): 515-529.
  • Zhao W, Zhang R, Liu J, Lv Y (2014). Semi varying coefficient zero-inflated generalized Poisson regression model. Communication in Statistics-Theory and Methods, 44(1): 171-185.

Sayıma Dayalı Elde Edilen Verilerin Modellenmesinde Sıfır Değer Ağırlıklı Genelleştirilmiş Poisson Regresyonun Kullanılması

Year 2017, Volume: 27 Issue: 1, 109 - 117, 31.03.2017
https://doi.org/10.29133/yyutbd.285706

Abstract

Bu çalışmada, sayıma dayalı olarak elde edilen
akar sayımlarının modellenmesinde sıfır değer ağırlıklı genelleştirilmiş
Poisson regresyonunun uygulaması yapılmıştır. Sıfır değer ağırlıklı
genelleştirilmiş Poisson regresyonunda; ortalama, aşırı yayılım ve sıfır değer
ağırlıklı yayılım olmak üzere üç parametre söz konusudur. Çalışmada, aşırı
yayılım ve sıfır değer ağırlıklı yayılım oldukça geniş bir aralıkta
değişmiştir. Bununla birlikte aşırı yayılım ve sıfır değer ağırlıklı yayılımın
akar sayımı üzerinde önemli bir etkiye sahip oldukları saptanmıştır
(p < 0.01). Akar sayımlarının %36’sı (130 gözlem) sıfır
gözlemlerden oluşmaktadır. Çalışmaya dahil edilen tüm bağımsız değişkenlerin
akar sayımı üzerine olan etkileri istatistiksel olarak önemli bulunmuştur
(p < 0.05). Akar sayımları bakımından bölgeler ve çeşitler arası
farklılığın istatistiksel olarak önemli oldukları saptanmıştır (p < 0.01).

References

  • Böhning D (1998). Zero- Inflated Poisson Models and C.A.MAN: A Tutorial Collection of Evidence. Biometrical Journal, 40(7): 833-843.
  • Consul P, Famoye F (1992). Generalized Poisson regression model. Comn. Statist. Theory Methods, 21(1): 89–109.
  • Cox R (1983). Some Remarks on Overdispersion. Biometrika, 70: 269-274.
  • Czado C, Erhardt V, Min A, Wagner S (2007). Dispersion and zero-inflation level applied to patent outsourcing rates Zero-inflated generalized Poisson models with regression effects on the mean. Statistical Modelling, 7(2): 125-153.
  • Famoye F, Singh K.P (2003). On inflated generalized Poisson regression models. Advanced Applied Statistics, 3(2): 145–158.
  • Famoye F, Karan P.S (2006). Zero- inflated generalized Poisson regression model with an application to domestic violence data. Journal of Data Science, 5(4): 117-130.
  • Kasap İ (2010). Seasonal Population Development of Spider Mites (Acari: Tetranychidae) and Their Predators in Sprayed and Unsprayed Apple Orchards in Van, Turkey. XIII International Congress of Acarology | Recife, Pernambuco, Brazil – August 23-27, 2010.
  • Lambert D (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1): 1-13.
  • Luo J, Qu Y (2013). Analysis of hypoglycemic events using negative binomial models. Pharm Stat.,12(4):233-42.
  • McCullagh P, Nelder J.A (1989). Generalized Linear Models. Second Edition, London, UK, Chapmann and Hall.
  • Ridout M, Hinde J, Demetrio C.G.B (2001). A score test for a zero-inflated Poisson regression model against zero-inflated negative binomial alteratves. Biometrics. 57: 219-233.
  • Yeşilova A, Özgökçe, M.S, Atlıhan R, Karaca İ, Özgökçe F, Yıldız Ş, Kaya Y (2011). Sıfır değer ağırlıklı genelleştirilmiş Poisson regresyonu yardımıyla Van Gölü’nde Notonecta viridis Delcourt, 1909 (Hemiptera: Notonectidae)’in populasyon değişimi üzerinde fiziko-kimyasal çevresel koşulların etkilerinin araştırılması. Turkish Journal of Entomology, 35(2): 325-338.
  • Zamani H, Ismail N (2014). Functional form for the zero-inflated generalized Poisson regression model. Communication in Statistics-Theory and Methods, 43(3): 515-529.
  • Zhao W, Zhang R, Liu J, Lv Y (2014). Semi varying coefficient zero-inflated generalized Poisson regression model. Communication in Statistics-Theory and Methods, 44(1): 171-185.
There are 14 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Süleyman Soygüder This is me

Abdullah Yeşilova

Yıldız Bora This is me

Publication Date March 31, 2017
Acceptance Date March 7, 2017
Published in Issue Year 2017 Volume: 27 Issue: 1

Cite

APA Soygüder, S., Yeşilova, A., & Bora, Y. (2017). Using Zero- Inflated Generalized Poisson Regression in Modelling of Count Data. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(1), 109-117. https://doi.org/10.29133/yyutbd.285706
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.