Research Article
BibTex RIS Cite

Çözücü Farkının Zeytin Yaprağı Ekstraktı’nın Polifenolik Profiline ve Toplam Fenolik Madde Miktarına Etkisi

Year 2017, Volume: 27 Issue: 1, 43 - 50, 31.03.2017
https://doi.org/10.29133/yyutbd.305097

Abstract

Zeytin ağaçları her dem yeşil, pek çok farklı amaç
için meyveleri, yaprakları ve gövdesi kullanılabilen en eski bitkilerinden
birisidir. Zeytin, özellikle Akdeniz diyetinde ve son zamanlarda da herkesin
ilgisini çeken geniş metabolik etkileriyle çok kullanılan bir besin kaynağı
haline gelmiştir. Zeytin ve yaprağı polifenolik bileşikler bakımından
zengindir. Polifenolik bileşikler arasında da oleuropein en bol bulunan ve en
aktif olanıdır. Diğer önemli aktif bileşikler ise hidroksitirozol, tirozol ve
verbaskozittir. Oleuropein antioksidan, antidiyabetik ve antimikrobiyal
etkilere sahiptir. Bu çalışma; çözücü farkının zeytin yaprağındaki polifenolik
bileşiklerin miktarlarına ve toplam fenolik madde miktarına etkisinin
araştırılması amacıyla planlanmıştır. Saf su, metanol/su ve metanol solventleri
kullanılarak zeytin yaprağı ekstrakte edilmiştir. Elde edilen ekstraktta,
içerik tayini kromatografik analiz kullanılarak araştırılmıştır. Ayrıca toplam
fenolik madde miktarı Folin-Ciocalteu metodu ile spektrofotometrik yöntem
kullanılarak tespit edilmiştir. Kromatografik analizler sonucunda metanolik
solventlerin oleuropeini zeytin yaprağından daha etkin bir şekilde ekstrakte
ettiği bulunmuştur. Solvent olarak su kullanıldığında ise hidroksitirozol,
tirozol
ve verbaskozitin daha iyi
ekstrakte edildiği tespit edilmiştir. Ekstrakte edilen t
oplam
fenolik madde miktarı bakımından solventler karşılaştırıldığında sırasıyla
metanol, metanol/su ve suda en yüksek miktarlar bulunmuştur. Sonuç olarak,
yüksek hidrofilik karakterlerinden dolayı polifenolik bileşiklerin, polaritesi
fazla olan metanolik solventlerde daha verimli ekstrakte edilebileceği
belirlenmiştir.

References

  • Amiot MJ, Fleuriet A, Macheix JJ (1989). Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28: 67-70.
  • Bouallagui Z, Han J, Isoda H, Sayad S (2011). Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem. Toxicol. 49: 179-184.
  • Bouaziz M, Sayadi S (2005). Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 107: 497-504.
  • Bourquelot E, Vintilesco J (1908). Sur l’oleuropeine, nouveau principle de nature glucosidique retire de l’olivier (Olea europaea L.). Comptes Rendus, 147: 533-535.
  • Briante R, Patumi M, Limongelli S, Febbraio F, Vaccaro C, Di Salle A, La Cara F, Nucci R (2002). Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. Plant Sci. 162: 791-798.
  • Cruess WV, Alsberg CL (1934). The bitter glucoside of the olive. J. Am. Chem. Soc. 56: 2115-2117.
  • Curren MS, King JW (2001). Ethanol-modified subcritical water extraction combined with solid-phase microextraction for determining atrazine in beef kidney. J. Agric. Food Chem. 49: 2175-2180.
  • Dai J, Mumper RJ (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 15: 7313-7352.
  • Di Benedetto R, Varì R, Scazzocchio B, Filesi C, Santangelo C, Giovannini C, Matarrese P, D’Archivio M, Masella R (2007). Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr. Meta. Car. 17: 535-545.
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC (2010). Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr. Rev. 68: 191-206.
  • Ibanez E, Kubatova A, Senorans FJ, Cavero S, Reglero G, Hawthorne SB (2003). Subcritical water extractio o antioxidant compounds from rosemary plants. J. Agric. Food Chem. 51: 375-382.
  • Jemai H, Bouaziz M, Fki I, El Feki A, Sayadi S (2008). Hypolipidemic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem-Biol Interact. 176: 88-98.
  • Jemai H, El Feki A, Sayadi S (2009). Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 57 (19): 8798-8804. Kubatova A, Miller DJ, Hawthorne SB (2001). Comparison of subcritical water and organic solvents for extracting kava lactones from kava root. J. Chromatogr. A 9236: 187-194.
  • Lee-Hung S, Zhang L, Huang PL, Chang YT, Huang PL (2003). Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1infection and OLE treatment. Biochem. Bioph. Res. Co. 307: 1029-1037.
  • Omar SH, (2010). Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 78: 133-154.
  • Pereira AP, Ferreira I, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereir JA (2007). Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 12: 1153-1162.
  • Ryan D, Antolovich M, Prenzler P, Robards K, Lavee S (2002). Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic. 92: 147-176.
  • Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro GF, Morozzi G (2004). Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 1054: 113-127.
  • Salta FN, Mylona A, Chiou A, Boskou G, Andrikopoulos NK (2007). Oxidative Stability of Edible Vegetable Oils Enriched in Polyphenols with Olive Leaf Extract. Food Sci. Tec. Int. 13(6): 413-421.
  • Silva S, Gomes L, Leitão F, Coelho AV, Vilas Boas L (2006). Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves. Food Sci Technol Int 12(5): 385-396.
  • Slinkard K, Singleton VL (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Viticult. 28: 49-55.
  • Soler-Rivas C, Espin, JC, Wichers HJ (2000). Oleuropein and related compounds. J. Agric. Food Chem. 80: 1013-1023.
  • Somova LI, Shode FO, Ramnanan P, Nadar A (2003). Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol 84: 299-305.
  • Taamalli A, Arráez-Román D, Barrajón-Catalán E, Ruiz-Torres V, Pérez-Sánchez A, Herrero M, Ibañez E, Micol V, Zarrouk M, Segura-Carretero A, et al. (2011). Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 50: 1817-1825.

Effect of Solvent Variation on Polyphenolic Profile and Total Phenolic Content of Olive Leaf Extract

Year 2017, Volume: 27 Issue: 1, 43 - 50, 31.03.2017
https://doi.org/10.29133/yyutbd.305097

Abstract

Olive tree is one of the
oldest plants, evergreen and of which fruits, leaves and trunk can be used for
many different purposes. Olive has become a nutritional source widely used for
especially in the Mediterranean diet and due to its extensive metabolic effects
attracting everyone's attention recently. Olive and olive leaves are rich in
polyphenolic compounds. Oleuropein is the most available and most active
polyphenolic compound. Hydroxytyrosol, tyrosol and verbascoside are other
important active compounds. Oleuropein has antioxidant, antidiabetic and
antimicrobial effects. This study was investigated the effects of solvent
variation on the amount of polyphenolic compounds and total phenolic content in
olive leaves. The olive leaves were extracted using water, methanol/water and
methanol solvents. The content of olive leaves extract was investigated by
chromatographic analysis. Also total phenolic content was determined using
Folin-Ciocalteu method by spectrophotometric method. The chromatographic
analysis showed that methanolic solvents more effectively extracted oleuropein
from olive leaf. However, when water was used as a solvent, hydroxytyrosol,
tyrosol and verbascoside were extracted better from olive leaf. When solvents
were compared in respect to their total phenolic content; the order from
highest to lower was respectively methanol, methanol/water, and water.
Consequently, due to their high hydrophilic character; polyphenolic compounds
can more efficiently be extracted in methanolic solvents with high polarity.

References

  • Amiot MJ, Fleuriet A, Macheix JJ (1989). Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28: 67-70.
  • Bouallagui Z, Han J, Isoda H, Sayad S (2011). Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem. Toxicol. 49: 179-184.
  • Bouaziz M, Sayadi S (2005). Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 107: 497-504.
  • Bourquelot E, Vintilesco J (1908). Sur l’oleuropeine, nouveau principle de nature glucosidique retire de l’olivier (Olea europaea L.). Comptes Rendus, 147: 533-535.
  • Briante R, Patumi M, Limongelli S, Febbraio F, Vaccaro C, Di Salle A, La Cara F, Nucci R (2002). Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. Plant Sci. 162: 791-798.
  • Cruess WV, Alsberg CL (1934). The bitter glucoside of the olive. J. Am. Chem. Soc. 56: 2115-2117.
  • Curren MS, King JW (2001). Ethanol-modified subcritical water extraction combined with solid-phase microextraction for determining atrazine in beef kidney. J. Agric. Food Chem. 49: 2175-2180.
  • Dai J, Mumper RJ (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 15: 7313-7352.
  • Di Benedetto R, Varì R, Scazzocchio B, Filesi C, Santangelo C, Giovannini C, Matarrese P, D’Archivio M, Masella R (2007). Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr. Meta. Car. 17: 535-545.
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC (2010). Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr. Rev. 68: 191-206.
  • Ibanez E, Kubatova A, Senorans FJ, Cavero S, Reglero G, Hawthorne SB (2003). Subcritical water extractio o antioxidant compounds from rosemary plants. J. Agric. Food Chem. 51: 375-382.
  • Jemai H, Bouaziz M, Fki I, El Feki A, Sayadi S (2008). Hypolipidemic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem-Biol Interact. 176: 88-98.
  • Jemai H, El Feki A, Sayadi S (2009). Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 57 (19): 8798-8804. Kubatova A, Miller DJ, Hawthorne SB (2001). Comparison of subcritical water and organic solvents for extracting kava lactones from kava root. J. Chromatogr. A 9236: 187-194.
  • Lee-Hung S, Zhang L, Huang PL, Chang YT, Huang PL (2003). Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1infection and OLE treatment. Biochem. Bioph. Res. Co. 307: 1029-1037.
  • Omar SH, (2010). Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 78: 133-154.
  • Pereira AP, Ferreira I, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereir JA (2007). Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 12: 1153-1162.
  • Ryan D, Antolovich M, Prenzler P, Robards K, Lavee S (2002). Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic. 92: 147-176.
  • Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro GF, Morozzi G (2004). Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 1054: 113-127.
  • Salta FN, Mylona A, Chiou A, Boskou G, Andrikopoulos NK (2007). Oxidative Stability of Edible Vegetable Oils Enriched in Polyphenols with Olive Leaf Extract. Food Sci. Tec. Int. 13(6): 413-421.
  • Silva S, Gomes L, Leitão F, Coelho AV, Vilas Boas L (2006). Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves. Food Sci Technol Int 12(5): 385-396.
  • Slinkard K, Singleton VL (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Viticult. 28: 49-55.
  • Soler-Rivas C, Espin, JC, Wichers HJ (2000). Oleuropein and related compounds. J. Agric. Food Chem. 80: 1013-1023.
  • Somova LI, Shode FO, Ramnanan P, Nadar A (2003). Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol 84: 299-305.
  • Taamalli A, Arráez-Román D, Barrajón-Catalán E, Ruiz-Torres V, Pérez-Sánchez A, Herrero M, Ibañez E, Micol V, Zarrouk M, Segura-Carretero A, et al. (2011). Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 50: 1817-1825.
There are 24 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mehmet Ali Temiz This is me

Atilla Temur This is me

Publication Date March 31, 2017
Acceptance Date February 20, 2017
Published in Issue Year 2017 Volume: 27 Issue: 1

Cite

APA Temiz, M. A., & Temur, A. (2017). Effect of Solvent Variation on Polyphenolic Profile and Total Phenolic Content of Olive Leaf Extract. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(1), 43-50. https://doi.org/10.29133/yyutbd.305097
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.