Araştırma Makalesi
BibTex RIS Kaynak Göster

Poisson Log Doğrusal Regresyon Kullanılarak Eriophyoid Akar (Acari, Prostigmata) Tarafından Enfekte Edilen Bitkiler için Relatif Riskin Modellenmesi

Yıl 2018, Cilt: 28 Sayı: 3, 266 - 270, 28.09.2018
https://doi.org/10.29133/yyutbd.398359

Öz

Poisson regresyonunda, akar populasyonu için relatif
risk tahminini esas alan bağımlı değişken sayıma dayalı olarak elde edilebilir.
Bu tip sayıma dalayı olarak elde edilen akar populasyonu için bilinen doğrusal
regresyon yöntemi kullanılarak risk tahmini oldukça zordur. Böyle durumlarda,
Poisson log doğrusal regresyonu oldukça uygundur. Bu çalışmada, enfekte edilen
bitkilerin olma oranları iki farklı buğday çeşidi ve dört farklı lokasyon
tarafından tanımlandı. Çalışmanın veri seti; iki farklı buğday çeşidi (Triticum aestivum L. and Secale cereale L. (Poaceae) ve dört farklı lokasyon (Muradiye, Ahlat, Erciş, Doğu
Beyazıt and Iğdır) kullanılarak iki yönlü tablo halinde verilmiştir. Referans
parametresi olarak çeşit için Triticum
aestivum
ve lokasyon için ise Muradiye alınmıştır. Secale cereale’de bitkilerin enfekte olma riski  Triticum aestivum’dan 1.245 kat daha yüksek olduğu
saptanmıştır (p<0.05). Iğdır
lokasyonundaki bitkilerin enfekte olma riski Muradiye lokasyonundan 1.101 kat daha yüksek olduğu
saptanmıştır (p>0.05). Poisson log doğrusal regresyon modelinde
bağımlı değişken sayımla elde edilen risk oranı ya da relatif risk biçiminde
tanımlanabilir. Bu nedenle Poisson log doğrusal regresyonu bu tip iki yönlü
tabloya dönüştürülebilen veriler için oldukça etklili bir yöntemdir. Burada,
iki yönlü tablonun oluşumu için çeşitler ve lokasyonlar kullanılmıştır.

Kaynakça

  • Agresti A, 1997. Categorical Data Analysis. John and Wiley & Sons, Incorporation, New Jersey, Canada.
  • Amrine, J. W. Jr. 2003. Catalog of the Eriophyoidea. A working catalog of the Eriophyoidea of the world. Ver. 1.0. <http://in- sects.tamu.edu/research/collection/hallan/acari/eriophyidae> (accessed 1 July 2013).
  • De Lillo, E., C. Craemer, J. W. Amrine, Jr, and G. Nuzzaci. 2010. Recommended procedures and techniques for mor- phological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51: 283–307.
  • Denizhan, E., W. Szydło, and A. Skoracka. 2013. Eriophyoid studies in Turkey: Review and perspectives. Biol. Lett. 50: 45–54.
  • Denizhan, E., monfreda R., De lillo, E. And Çobanoğlu, S. 2015. Eriophyoid mite fauna (Acari: Trombidiformes: Eriophyoidea) of Turkey:
new species, new distribution reports and an updated catalogue. Zootaxa, 3991(1), 1-63.
  • Eye, A. V., Mun, E. Y., 2013. Log-Linear Modeling. John and Wiley & Sons, Inc., Hoboken, New Jersey, Canada.
  • SAS, 2017. SAS/Stat Software Hangen and Enhanced, SAS Institute Incorporation, USA.
  • Yeşilova A, Kaydan B, Kaya Y, 2010. Modelling insect-egg data with excess zeros using zero-inflated regression models. Hacettepe Journal of Mathematics and Statistics, 39(2), 273-282.
  • Yeşilova A, Denizhan, E, 2016. Modeling mite counts Using Poisson and negative binomial regressions. 25(11), 5062-5066. Fresenius Environmental Bulletin.

Modeling Relative Risk Assesment for Infected Plants by Eriophyoid Mites (Acari, Prostigmata) Using Poisson Log Linear Regression Model

Yıl 2018, Cilt: 28 Sayı: 3, 266 - 270, 28.09.2018
https://doi.org/10.29133/yyutbd.398359

Öz

In Poisson regression, the dependent variable of
the mite population relative risk assessment can be estimated as based on
countable data. Due to disappearing data and numerous uncountable values of the
mite population it became difficult to evaluate the risk factor by linear
regression methods.
The assessment of variable features of mites
depending on conditions
is very suitable for Poisson regression modeling
system. In the this study, the occurrence of rare events such as the occurrence
ratio of infected plants was defined by eriophyid mites on two wheat varieties
and four different localities. The study was constructed by two way possibility table depending on plant
varieties (Triticum aestivum L. and Secale cereale L. (Poaceae) with four locations (Muradiye, Ahlat, Erciş, Doğu
Beyazıt and Iğdır). The reference parameters were Triticum aestivum for varieties, and Muradiye for location,
respectively. The risk assessment of infected plants for Secale cereale is 1.245 times higher as compared to Triticum
aestivum
and this difference was found statistically significant
(p<0.05). The risk of infected plants for Iğdır location is 1.101 times
higher as compared to Muradiye location (p>0.05). In the Poisson log-linear regression, the dependent variable is a
risk ratio or a relative risk can be estimated as well as countable data. Thus,
Poisson log-linear regression model is a very effective method for analysis of
two-way contingency table. Two-way contingency table is created considering the
eriophyid mite infection ratio depending on location and varieties,
respectively.

Kaynakça

  • Agresti A, 1997. Categorical Data Analysis. John and Wiley & Sons, Incorporation, New Jersey, Canada.
  • Amrine, J. W. Jr. 2003. Catalog of the Eriophyoidea. A working catalog of the Eriophyoidea of the world. Ver. 1.0. <http://in- sects.tamu.edu/research/collection/hallan/acari/eriophyidae> (accessed 1 July 2013).
  • De Lillo, E., C. Craemer, J. W. Amrine, Jr, and G. Nuzzaci. 2010. Recommended procedures and techniques for mor- phological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51: 283–307.
  • Denizhan, E., W. Szydło, and A. Skoracka. 2013. Eriophyoid studies in Turkey: Review and perspectives. Biol. Lett. 50: 45–54.
  • Denizhan, E., monfreda R., De lillo, E. And Çobanoğlu, S. 2015. Eriophyoid mite fauna (Acari: Trombidiformes: Eriophyoidea) of Turkey:
new species, new distribution reports and an updated catalogue. Zootaxa, 3991(1), 1-63.
  • Eye, A. V., Mun, E. Y., 2013. Log-Linear Modeling. John and Wiley & Sons, Inc., Hoboken, New Jersey, Canada.
  • SAS, 2017. SAS/Stat Software Hangen and Enhanced, SAS Institute Incorporation, USA.
  • Yeşilova A, Kaydan B, Kaya Y, 2010. Modelling insect-egg data with excess zeros using zero-inflated regression models. Hacettepe Journal of Mathematics and Statistics, 39(2), 273-282.
  • Yeşilova A, Denizhan, E, 2016. Modeling mite counts Using Poisson and negative binomial regressions. 25(11), 5062-5066. Fresenius Environmental Bulletin.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Yeşilova

Evsel Denizhan

Sultan Çobanoğlu

Yayımlanma Tarihi 28 Eylül 2018
Kabul Tarihi 17 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 28 Sayı: 3

Kaynak Göster

APA Yeşilova, A., Denizhan, E., & Çobanoğlu, S. (2018). Modeling Relative Risk Assesment for Infected Plants by Eriophyoid Mites (Acari, Prostigmata) Using Poisson Log Linear Regression Model. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(3), 266-270. https://doi.org/10.29133/yyutbd.398359

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.