Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Salt Stress on Some Nutrient Content and Total Antioxidant and Total Phenol Content in Different Bean Genotypes

Yıl 2019, Cilt: 29 Sayı: 1, 136 - 144, 29.03.2019
https://doi.org/10.29133/yyutbd.504748

Öz

In this
study, the effects of salt stress on 20 bean genotypes collected from Lake Van
Basin were investigated. The salt application was treated in 0 mM, 25 mM and 50
mM NaCl concentrations, and then the plants were grown in growth chamber
conditions. To determine the effect of stress, total antioxidant capacity,
total phenolics and some nutrient elements content (P, Mg, Fe, Cu, Mn and Zn)
were evaluated. In the parameters examined in terms of tolerance to the salt,
the genotypes showed different responses. When the rate of change of the plants
response to salt stress according to control was examined, it was determined
that with the increase in salt doses, total phenolic and total antioxidant
capacity decreased at high rate and salt stress had a negative effect on
genotypes. It was found that the contents of P in both doses and Fe at 50 mM
were increased in shoot, while the contents of Mg, Cu and Zn at 25 mM and 50
mM, Mn at 50 mM were decreased. In the root, the contents of Fe, Mg and Mn were
decreased at 25 mM, and P, Mg, Cu, Mn and Zn contents were detected to increase
with the increase in salt doses as well as. The genotypes G9 and G30 showed
high levels of tolerance in both salt concentrations and the genotypes G31, G49
and G94 were found to be sensitive to both 25 mM and 50 mM salt concentrations.

Kaynakça

  • Alam, S.M (1994). Nutrient uptake by plants under stres condition. In: Persaraklı, M. (ed.): Handbook of plant and crop stres. Marcel Dekker, New York. 227-246.Allakhverdiev, S. I., Sakamoto. A., Nishiyama. Y., Inaba. M.,& Murata. N (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant physiology. 123(3). 1047-1056.Aydın, A., Turan, M., Sezen Y (2000). Effect of sodium salts on growth and nutrient uptake of spinach (Spinacia olerecea L) and beans (Phaseolus vulgaris L). International Symposium on Desertification. p:525-530. 13-17 June. Konya-Turkey Benzie, I.E.F., Strain, J.J (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Analytical Biochemistry 239: 70-76.Ellialtıoğlu. Ş (1999). Doku kültürü yoluyla vegetatif çoğaltmada doku kararması sorunu. nedenleri ve çözüm yolları. Biyoteknoloji (Kükem) Dergisi. 24 (1).37–47. Es-Safi. N. E., Kollman. A., Khlifi. S., Ducrot. P. H (2007). Antioxidative effect of compounds isolated from Globularia alypum L. structure–activity relationship. LWT. 40. 1246–1252.Gadallah. M.A.A (1999). Effect of Proline and Glycinebetaine on Vicia faba Responses to Salt Stress. Biologia Plantarum. 42(2):249–257.Gomez. J.M., Hernandez. J.A., Jimenez. A.. Del Rio. L.A., Sevilla. F (1999). Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress of pea plants. Free Radic. Res. 31. 11–18.Grattan SR (1993). How plants responds to salts. agricultural salinity and drainage. Hanson. B., Grattan. S. R. and Fulton. A. (Eds.). University of California Irrigation Program. University of California. Davis. pp:3-5. Greenway H., Munns R (1980). Mechanisms of salt tolerance in nonhallophytes. Ann. Rev. Plant Physiol. 31, 149-190. Kıpçak, S., Erdinç, Ç (2016). Determination of salt tolerance levels of common bean (Phaseolus vulgaris L.) genotypes grown in Lake Van Basin. YYU J. Agr. Sci., 26(3), 421-429 (in Turkish).Lauchli A., Grattan S.R (2007). Plant growth and development under salinity stress. M.A. Jenks et al. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, 1–32. Levitt. J (1972) Responses of Plants to Environmental Stress. Academic Press. New York. 698 pp., Physiological Ecology.Malkoç. M., Aydın. A (2003). Mısır (Zea Mays L.) ve Fasulye (Phaseolus Vulgaris L.)’nin Gelişimi ve Bitki Besin Maddeleri İçeriğine Farklı Tuz Uygulamalarının Etkisi. Atatürk Üniv. Ziraat Fak. Derg. 34 (3). 211-216.Marschner. H (1995). Mineral Nutrition of Higher Plants. Academic Pres. 657- 680.Mohamed. A. A., Aly. A. A (2008). Alterations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plant grown under seawater salt stress. American-Eurasian Journal of Scientific Research. 3 (2). 139–146.Mugdal. V., Madaan. N., Mudgal. A (2010). Biochemical Mechanisms of Salt Tolerance in Plants. International Journal of Botany. 6 (2). 136-143.Munns, R., Tester, M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651–681.Nizamoğlu. M. N.. Nas. S (2010). Meyve ve sebzelerde bulunan fenolik bileşikler; yapıları ve önemleri. Gıda Teknolojileri Elektronik Dergisi. 20–35.Peleg, Z., Walia, H., Blumwald, E (2012). In Plant Biotechnology and Agriculture: Prospects for the 21st Century (Ed: Arie Altman, Paul Michael Hasegawa). Integrating genomics and genetics to accelerate development of drought and salinity tolerant crops. Academic press, Elsevier. p: 271-285.Posmyk. M.M.. Kontek. R.. Janas. K.M (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety. 72. 6–602.Ruiz. M. J.. Rivero. M. R.. Lo´pez-Cantarero. I.. Romero. R (2003). Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation. 41. 173–177.Swain, T. and Hillis, W.E (1959). The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10 (1): 63-68.Turhan. O. Y.. Kızıloğlu. F. T (1999). Toprak Tuzluluğunun Değişik Rhizobium phaseoli İzolatları ile Aşılanan Fasulye (Phaseolus vulgaris L) Çeşit ve Gelişimine Etkisi. GAP. I. Tarım Kongresi. 26-28 Mayıs. S:937-945. Şanlıurfa-TürkiyeTuteja. N (2007). Mechanisms of High Salinity Tolerance in Plants. Methods in Enzymology. 428. 419-438.Yılmaz E, Tuna AL, Bürün B (2011). Bitkilerin tuz stresine karşı geliştirdikleri tolerans stratejileri. C.B.Ü. Fen Bilimleri Dergisi, 7 (1): 47–66

Tuz Stresinin Farklı Fasulye Genotiplerinde Bazı Besin Elementi İçeriği ile Toplam Antioksidan ve Toplam Fenol İçeriğine Etkisi

Yıl 2019, Cilt: 29 Sayı: 1, 136 - 144, 29.03.2019
https://doi.org/10.29133/yyutbd.504748

Öz

Bu çalışmada Van Gölü Havzası’ndan toplanmış
olan 20 adet fasulye genotipinde tuz stresinin etkileri belirlenmeye
çalışılmıştır. Tuz uygulaması 0 mM, 25 mM ve 50 mM NaCl konsantrasyonu
olmak üzere üç şekilde belirlenmiş olup, bitkiler iklim odası koşullarında
yetiştirilmiştir. Stresin etkisini belirlemek için antioksidan miktarı, toplam
fenol ve bazı besin element içerikleri (P, Mg, Fe, Cu, Mn ve Zn)
değerlendirilmiştir. Tuza tolerans bakımından incelenen parametrelerde
genotiplerin farklı tepkiler gösterdiği saptanmıştır. Tuz stresi altındaki
bitkilerin kontrole göre değişim oranları incelendiğinde, tuz dozunun
artmasıyla beraber toplam fenol içeriği ve antioksidan miktarının yüksek oranda
azalış gösterdiği, tuz stresinin genotipler üzerinde negatif bir etkiye sahip
olduğu belirlenmiştir. Yeşil aksamda her iki tuz dozunda P içeriğinin, 50 mM
tuzda Fe içeriğinin arttığı; 25 mM ve 50 mM tuz dozlarında Mg, Cu ve Zn
içeriklerinin, 50 mM NaCl uygulamasında ise Mn içeriğinin azaldığı
saptanmıştır. Kökte Fe, Mg and Mn içeriklerinin 25 mM ’de azaldığı ve P, Mg,
Cu, Mn ve Zn içeriklerinin tuz dozu arttıkça artış gösterdiği belirlenmiştir.
Çalışmada kullanılan G9 ve G30 nolu
genotiplerin her iki tuz konsantrasyonunda gösterdiği tolerans seviyesinin
yüksek olduğu, G31, G49 ve G94 genotiplerinin hem 25 mM hem de 50 mM tuz
konsantrasyonlarında hassas oldukları belirlenmiştir.  

Kaynakça

  • Alam, S.M (1994). Nutrient uptake by plants under stres condition. In: Persaraklı, M. (ed.): Handbook of plant and crop stres. Marcel Dekker, New York. 227-246.Allakhverdiev, S. I., Sakamoto. A., Nishiyama. Y., Inaba. M.,& Murata. N (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant physiology. 123(3). 1047-1056.Aydın, A., Turan, M., Sezen Y (2000). Effect of sodium salts on growth and nutrient uptake of spinach (Spinacia olerecea L) and beans (Phaseolus vulgaris L). International Symposium on Desertification. p:525-530. 13-17 June. Konya-Turkey Benzie, I.E.F., Strain, J.J (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Analytical Biochemistry 239: 70-76.Ellialtıoğlu. Ş (1999). Doku kültürü yoluyla vegetatif çoğaltmada doku kararması sorunu. nedenleri ve çözüm yolları. Biyoteknoloji (Kükem) Dergisi. 24 (1).37–47. Es-Safi. N. E., Kollman. A., Khlifi. S., Ducrot. P. H (2007). Antioxidative effect of compounds isolated from Globularia alypum L. structure–activity relationship. LWT. 40. 1246–1252.Gadallah. M.A.A (1999). Effect of Proline and Glycinebetaine on Vicia faba Responses to Salt Stress. Biologia Plantarum. 42(2):249–257.Gomez. J.M., Hernandez. J.A., Jimenez. A.. Del Rio. L.A., Sevilla. F (1999). Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress of pea plants. Free Radic. Res. 31. 11–18.Grattan SR (1993). How plants responds to salts. agricultural salinity and drainage. Hanson. B., Grattan. S. R. and Fulton. A. (Eds.). University of California Irrigation Program. University of California. Davis. pp:3-5. Greenway H., Munns R (1980). Mechanisms of salt tolerance in nonhallophytes. Ann. Rev. Plant Physiol. 31, 149-190. Kıpçak, S., Erdinç, Ç (2016). Determination of salt tolerance levels of common bean (Phaseolus vulgaris L.) genotypes grown in Lake Van Basin. YYU J. Agr. Sci., 26(3), 421-429 (in Turkish).Lauchli A., Grattan S.R (2007). Plant growth and development under salinity stress. M.A. Jenks et al. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, 1–32. Levitt. J (1972) Responses of Plants to Environmental Stress. Academic Press. New York. 698 pp., Physiological Ecology.Malkoç. M., Aydın. A (2003). Mısır (Zea Mays L.) ve Fasulye (Phaseolus Vulgaris L.)’nin Gelişimi ve Bitki Besin Maddeleri İçeriğine Farklı Tuz Uygulamalarının Etkisi. Atatürk Üniv. Ziraat Fak. Derg. 34 (3). 211-216.Marschner. H (1995). Mineral Nutrition of Higher Plants. Academic Pres. 657- 680.Mohamed. A. A., Aly. A. A (2008). Alterations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plant grown under seawater salt stress. American-Eurasian Journal of Scientific Research. 3 (2). 139–146.Mugdal. V., Madaan. N., Mudgal. A (2010). Biochemical Mechanisms of Salt Tolerance in Plants. International Journal of Botany. 6 (2). 136-143.Munns, R., Tester, M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651–681.Nizamoğlu. M. N.. Nas. S (2010). Meyve ve sebzelerde bulunan fenolik bileşikler; yapıları ve önemleri. Gıda Teknolojileri Elektronik Dergisi. 20–35.Peleg, Z., Walia, H., Blumwald, E (2012). In Plant Biotechnology and Agriculture: Prospects for the 21st Century (Ed: Arie Altman, Paul Michael Hasegawa). Integrating genomics and genetics to accelerate development of drought and salinity tolerant crops. Academic press, Elsevier. p: 271-285.Posmyk. M.M.. Kontek. R.. Janas. K.M (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety. 72. 6–602.Ruiz. M. J.. Rivero. M. R.. Lo´pez-Cantarero. I.. Romero. R (2003). Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation. 41. 173–177.Swain, T. and Hillis, W.E (1959). The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10 (1): 63-68.Turhan. O. Y.. Kızıloğlu. F. T (1999). Toprak Tuzluluğunun Değişik Rhizobium phaseoli İzolatları ile Aşılanan Fasulye (Phaseolus vulgaris L) Çeşit ve Gelişimine Etkisi. GAP. I. Tarım Kongresi. 26-28 Mayıs. S:937-945. Şanlıurfa-TürkiyeTuteja. N (2007). Mechanisms of High Salinity Tolerance in Plants. Methods in Enzymology. 428. 419-438.Yılmaz E, Tuna AL, Bürün B (2011). Bitkilerin tuz stresine karşı geliştirdikleri tolerans stratejileri. C.B.Ü. Fen Bilimleri Dergisi, 7 (1): 47–66
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Selma Kıpçak 0000-0002-0563-1130

Aytekin Ekincialp 0000-0003-1500-3215

Çeknas Erdinç Bu kişi benim 0000-0003-1208-032X

Turgay Kabay 0000-0002-3239-0037

Suat Şensoy 0000-0001-7129-6185

Yayımlanma Tarihi 29 Mart 2019
Kabul Tarihi 7 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 29 Sayı: 1

Kaynak Göster

APA Kıpçak, S., Ekincialp, A., Erdinç, Ç., Kabay, T., vd. (2019). Tuz Stresinin Farklı Fasulye Genotiplerinde Bazı Besin Elementi İçeriği ile Toplam Antioksidan ve Toplam Fenol İçeriğine Etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(1), 136-144. https://doi.org/10.29133/yyutbd.504748

Cited By







NaCl Stresinin Yem Bezelyesinin Klorofil ve Mineral İçeriğine Etkisi
Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi
Özlem ÖNAL AŞCI
https://doi.org/10.24180/ijaws.757855

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.