Yıl 2019, Cilt 29 , Sayı 3, Sayfalar 559 - 568 2019-09-30

Demir Atıklarının Nano Ölçekte Sıfır Değerlikli Demire Dönüştürülmesi: Hidroponik Sistemlerde Sebzelerin Verim ve Fizyolojik Özelliklerinin Geliştirilmesi İçin Bir Araç, Yüzen Sistemde Brokoli Örneği
Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System

Edris SHABANI [1] , Sahebali BOLANDNAZAR [2] , Hemattollah PIRDASHTI [3]


Bitkilerdeki demir eksikliğinin azaltılması ve sonuçta tarım ürünlerinin besin kalitesinin arttırılması yönünde yeni kazanımlar elde edilmelidir. Çalışma, faklı oranlarda nano ölçekte sıfır değerlikli demir ve demir şelatın (NI/Demir şelat) (0: 100, 25:75, 50:50, 75:25 ve 100: 0) 1,5 mg/L konsantrasyonunda ve farklı pH seviyelerindeki besin çözeltilerinde (5.5, 7.0 ve 8.5) yüzen sistemdeki brokoli bitkilerinin verimi, büyümesi ve fotosentez pigmentleri üzerine etkilerini görmek amacıyla yürütülmüştür. Deneme, tamamen tesadüfi faktöriyel deneme desenine göre üç tekerrürlü olarak tasarlanmıştır. Sonuçlar, brokoli bitkilerinin biyokütle ve fotosentez pigmentleri bakımından, farklı seviyelerde NI/Demir şelatı ve besin çözeltisi pH'sından önemli ölçüde etkilendiğini göstermiştir. En yüksek taze baş ağırlığı, kontrol uygulamasından % 32.53 daha fazla olarak, 50:50 oranındaki ve pH=7.0 besin çözeltisinin birlikte uygulanmasında gözlenmiştir. Bu araştırmanın sonuçları, farklı oranlarda 50: 50 seviyelerine kadar NI/Demir şelatı kullanılmasının, brokoli bitkilerinin büyümesini ve verimini arttırdığını göstermiştir. İlk rapor olarak, bu deneme sonuçları, nano ölçekli sıfır değerli demir tozlarının brokoli bitkilerinin büyümesini ve verimini artırabileceğini göstermiştir.

New achievements should be directed towards reducing iron deficiency in the plant and ultimately increasing the nutritional quality of agricultural products. An experiment was conducted to find the effects of various ratios of nano scales zero valent iron to iron chelate (NI/ Iron chelate) (0:100, 25:75, 50:50, 75:25 and 100:0) at a concentration of 1.5 mg L-1 in different pH levels (5.5, 7.0 and 8.5) of nutrients solutions on yield, growth and photosynthesis pigments of broccoli plants in floating system. The experiment was designed as a factorial combination and treatments were arranged in a completely randomized design with three replicates. The results indicated that the growth of broccoli plants in terms of biomass and photosynthesis pigments were significantly affected by both different levels of NI/ Iron chelate and nutrient solution pH. The highest amount of head fresh weight was observed in concomitant application of 50:50 ratio and pH=7.0 nutrient solution, which was 32.53% more than the control treatment. The results of this experiment showed that the use of different ratios of NI/Iron chelate up to 50:50 levels improved the growth and yield of broccoli plants. As first report, the results of this experiment suggested that nano scale zero valent iron powders could increase the growth and yield of broccoli plants.

  • Carter, C. T., Grieve, C. M., & Poss J. A. (2005). Salinity effects on emergence, survival and ion accumulation of Limonium perezii. Journal of Plant Nutrition, 28, 1243–1257.
  • Carter, G. A., & Knapp A. K. (2001). Leaf optical properties in highest plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88 (4), 677-684.
  • Guo, F.A., Trannoy, N., & Lu, J. (2004). Analysis of thermal properties by scanning thermal microscopy in nanocrystallized iron surface induced by ultrasonic shot peening. Materials Science and Engineering: A, 369 (1-2), 36-42.
  • He, J., Aminda Chua, N.Y., & Qin, L. (2007). Interaction between iron stress and root-zone temperature on physiological aspects of aeroponically grown Chinese broccoli. Journal of Plant Nutrition, 31 (1), 173-192.
  • Judy, J. D., Unrine, J. M., Rao, W., Wirick, S., & Bertsch, P. M. (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environmental science and technology, 46 (15), 8467−8474.
  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior, and effects of nanoparticles in the environment. Environment Pollution, 150 (1), 5-22.Oviedo, C., & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny. Quimica Nova, 26 (6), 901−905.
  • Rauch, J., Kolch, W., Laurent, S., & Mahmoudi, M. (2013). Big signals from small particles: Regulation of cell signaling pathways by nanoparticles. Chemical reviews, 113 (5), 3391-3406.
  • Remya, N., Saino, H. V., Baiju, G., Maekawa, T., Yoshida, Y., & Sakthi Kumar, D. (2010). Nanoparticulate material delivery to plant. Plant Science, 179, 154–163.
  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry, 59 (8), 3485-3498.
  • Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2 (2), 112–113.
  • Tan, X. M., & Fugetsu, B. (2007). Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. Journal of Biomedical nanotechnology, 3, 285–288.
  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5 (1), 30−42.
  • Zeng, H. P., Zhao, Y. Z., Lu, Y. F., Li, D., & Zhang, J. (2017). Adsorption behaviors towards As and structural change of iron and manganese oxide sludge by thermal treatment. Environmental Science, 37 (8), 2986-2993.
  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10 (6), 713−717.
  • Zhu, R. R., Wang, S. L., Chao, J., Shi, D. L., Zhang, R., Sun, X. & Y., Yao, S. D. (2009). Bio-effects of nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Materials Science and Engineering C, 29 (3), 691−696.
  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental science and technology, 39 (5), 1378−1383.
  • Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental science and technology, 31 (7), 2154-2156.
  • Appleton, E. A. (1996). Nickel-Iron wall against contaminated groundwater. Environmental science and technology, 30, 536-539.
  • Bonetti, E., Del Bianco, L., Pasquini, L., & Sampaolesi, E. (1999). Thermal evolution of ball milled nanocrystalline iron. Nanostructured Materials, 12 (5-8): 685-688.
  • Cao, J., Wei L., Huang, Q., Wang, L., & Han, S. (1999). Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere, 38 (3), 565-571.
  • Dufkova, V. (1984). EDTA in algal culture media. Archiv for hydrobiologie. Supplement volumes. Algological Studies, 37, 479-492.
  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental science and technology, 47, 10645-10652.
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management.
  • Li, F., Vipulanandan C., Kishore, K., & Mohanty, K. K. (2003). Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223, 103-112.
  • Lichtenthaler, H. K., & Buschmann, C. (2001). Current Protocols in Food Analytical Chemistry. Unit F4.3.1-F4.3.8.
  • Oviedo, C., & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny. Quimica Nova, 26 (6), 901−905.
  • Pena-Olmos, J. E., & Casierra-Posada F. (2013). Photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var Italica) affected by excess iron. Orinoquia, 17 (1), 15-22.
  • Vose, P. 1982. Iron nutrition in plants: A world overview. Journal of Plant Nutrition, 5 (4−7), 233−249.
  • Yuan, G., Wang, X., Guo, R., & Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121 (4), 1014- 1019.
Birincil Dil en
Konular Bahçe Bitkileri
Yayımlanma Tarihi Eylül 2019
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-4208-616X
Yazar: Edris SHABANI (Sorumlu Yazar)
Ülke: Iran


Orcid: 0000-0001-9396-7373
Yazar: Sahebali BOLANDNAZAR

Orcid: 0000-0002-1255-0371
Yazar: Hemattollah PIRDASHTI

Tarihler

Yayımlanma Tarihi : 30 Eylül 2019

Bibtex @araştırma makalesi { yyutbd556395, journal = {Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi}, issn = {1308-7576}, eissn = {1308-7584}, address = {}, publisher = {Yüzüncü Yıl Üniversitesi}, year = {2019}, volume = {29}, pages = {559 - 568}, doi = {10.29133/yyutbd.556395}, title = {Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System}, key = {cite}, author = {SHABANI, Edris and BOLANDNAZAR, Sahebali and PIRDASHTI, Hemattollah} }
APA SHABANI, E , BOLANDNAZAR, S , PIRDASHTI, H . (2019). Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi , 29 (3) , 559-568 . DOI: 10.29133/yyutbd.556395
MLA SHABANI, E , BOLANDNAZAR, S , PIRDASHTI, H . "Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (2019 ): 559-568 <https://dergipark.org.tr/tr/pub/yyutbd/issue/49200/556395>
Chicago SHABANI, E , BOLANDNAZAR, S , PIRDASHTI, H . "Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (2019 ): 559-568
RIS TY - JOUR T1 - Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System AU - Edris SHABANI , Sahebali BOLANDNAZAR , Hemattollah PIRDASHTI Y1 - 2019 PY - 2019 N1 - doi: 10.29133/yyutbd.556395 DO - 10.29133/yyutbd.556395 T2 - Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi JF - Journal JO - JOR SP - 559 EP - 568 VL - 29 IS - 3 SN - 1308-7576-1308-7584 M3 - doi: 10.29133/yyutbd.556395 UR - https://doi.org/10.29133/yyutbd.556395 Y2 - 2019 ER -
EndNote %0 Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System %A Edris SHABANI , Sahebali BOLANDNAZAR , Hemattollah PIRDASHTI %T Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System %D 2019 %J Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi %P 1308-7576-1308-7584 %V 29 %N 3 %R doi: 10.29133/yyutbd.556395 %U 10.29133/yyutbd.556395
ISNAD SHABANI, Edris , BOLANDNAZAR, Sahebali , PIRDASHTI, Hemattollah . "Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 / 3 (Eylül 2019): 559-568 . https://doi.org/10.29133/yyutbd.556395
AMA SHABANI E , BOLANDNAZAR S , PIRDASHTI H . Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System. YYÜ TAR BİL DERG. 2019; 29(3): 559-568.
Vancouver SHABANI E , BOLANDNAZAR S , PIRDASHTI H . Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2019; 29(3): 568-559.