Research Article
BibTex RIS Cite

Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System

Year 2019, Volume: 29 Issue: 3, 559 - 568, 30.09.2019
https://doi.org/10.29133/yyutbd.556395

Abstract

New achievements should be directed towards reducing iron deficiency in
the plant and ultimately increasing the nutritional quality of agricultural
products. An experiment was conducted
to find the effects of various ratios of nano scales zero valent
iron to iron chelate (NI/ Iron chelate) (0:100, 25:75, 50:50, 75:25 and 100:0)
at a concentration of 1.5 mg L-1 in different pH levels (5.5, 7.0
and 8.5) of nutrients solutions on
yield, growth and photosynthesis pigments of broccoli
plants in
floating
system. The experiment was designed as a factorial combination and treatments
were arranged in a completely randomized design with three replicates.
The results indicated that
the growth of broccoli plants in terms of biomass and photosynthesis
pigments were significantly
affected by both different levels of NI/ Iron chelate and
nutrient solution pH. The highest amount of head fresh weight was
observed in

concomitant application of 50:50
ratio and
pH=7.0 nutrient solution, which
was 32.53% more than the control treatment
. The results of this
experiment showed that the use of different ratios of NI/Iron chelate up to
50:50 levels improved the growth and yield of broccoli plants.
As first report, the
results of this experiment suggested that nano scale zero valent iron powders
could increase the growth and yield of broccoli plants.

References

  • Carter, C. T., Grieve, C. M., & Poss J. A. (2005). Salinity effects on emergence, survival and ion accumulation of Limonium perezii. Journal of Plant Nutrition, 28, 1243–1257.
  • Carter, G. A., & Knapp A. K. (2001). Leaf optical properties in highest plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88 (4), 677-684.
  • Guo, F.A., Trannoy, N., & Lu, J. (2004). Analysis of thermal properties by scanning thermal microscopy in nanocrystallized iron surface induced by ultrasonic shot peening. Materials Science and Engineering: A, 369 (1-2), 36-42.
  • He, J., Aminda Chua, N.Y., & Qin, L. (2007). Interaction between iron stress and root-zone temperature on physiological aspects of aeroponically grown Chinese broccoli. Journal of Plant Nutrition, 31 (1), 173-192.
  • Judy, J. D., Unrine, J. M., Rao, W., Wirick, S., & Bertsch, P. M. (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environmental science and technology, 46 (15), 8467−8474.
  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior, and effects of nanoparticles in the environment. Environment Pollution, 150 (1), 5-22.Oviedo, C., & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny. Quimica Nova, 26 (6), 901−905.
  • Rauch, J., Kolch, W., Laurent, S., & Mahmoudi, M. (2013). Big signals from small particles: Regulation of cell signaling pathways by nanoparticles. Chemical reviews, 113 (5), 3391-3406.
  • Remya, N., Saino, H. V., Baiju, G., Maekawa, T., Yoshida, Y., & Sakthi Kumar, D. (2010). Nanoparticulate material delivery to plant. Plant Science, 179, 154–163.
  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry, 59 (8), 3485-3498.
  • Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2 (2), 112–113.
  • Tan, X. M., & Fugetsu, B. (2007). Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. Journal of Biomedical nanotechnology, 3, 285–288.
  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5 (1), 30−42.
  • Zeng, H. P., Zhao, Y. Z., Lu, Y. F., Li, D., & Zhang, J. (2017). Adsorption behaviors towards As and structural change of iron and manganese oxide sludge by thermal treatment. Environmental Science, 37 (8), 2986-2993.
  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10 (6), 713−717.
  • Zhu, R. R., Wang, S. L., Chao, J., Shi, D. L., Zhang, R., Sun, X. & Y., Yao, S. D. (2009). Bio-effects of nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Materials Science and Engineering C, 29 (3), 691−696.
  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental science and technology, 39 (5), 1378−1383.
  • Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental science and technology, 31 (7), 2154-2156.
  • Appleton, E. A. (1996). Nickel-Iron wall against contaminated groundwater. Environmental science and technology, 30, 536-539.
  • Bonetti, E., Del Bianco, L., Pasquini, L., & Sampaolesi, E. (1999). Thermal evolution of ball milled nanocrystalline iron. Nanostructured Materials, 12 (5-8): 685-688.
  • Cao, J., Wei L., Huang, Q., Wang, L., & Han, S. (1999). Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere, 38 (3), 565-571.
  • Dufkova, V. (1984). EDTA in algal culture media. Archiv for hydrobiologie. Supplement volumes. Algological Studies, 37, 479-492.
  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental science and technology, 47, 10645-10652.
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management.
  • Li, F., Vipulanandan C., Kishore, K., & Mohanty, K. K. (2003). Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223, 103-112.
  • Lichtenthaler, H. K., & Buschmann, C. (2001). Current Protocols in Food Analytical Chemistry. Unit F4.3.1-F4.3.8.
  • Oviedo, C., & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny. Quimica Nova, 26 (6), 901−905.
  • Pena-Olmos, J. E., & Casierra-Posada F. (2013). Photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var Italica) affected by excess iron. Orinoquia, 17 (1), 15-22.
  • Vose, P. 1982. Iron nutrition in plants: A world overview. Journal of Plant Nutrition, 5 (4−7), 233−249.
  • Yuan, G., Wang, X., Guo, R., & Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121 (4), 1014- 1019.

Demir Atıklarının Nano Ölçekte Sıfır Değerlikli Demire Dönüştürülmesi: Hidroponik Sistemlerde Sebzelerin Verim ve Fizyolojik Özelliklerinin Geliştirilmesi İçin Bir Araç, Yüzen Sistemde Brokoli Örneği

Year 2019, Volume: 29 Issue: 3, 559 - 568, 30.09.2019
https://doi.org/10.29133/yyutbd.556395

Abstract

Bitkilerdeki
demir eksikliğinin azaltılması ve sonuçta tarım ürünlerinin besin kalitesinin
arttırılması yönünde yeni kazanımlar elde edilmelidir. Çalışma, faklı oranlarda
nano ölçekte sıfır değerlikli demir ve demir şelatın (NI/Demir şelat) (0: 100,
25:75, 50:50, 75:25 ve 100: 0) 1,5 mg/L konsantrasyonunda ve farklı pH
seviyelerindeki besin çözeltilerinde (5.5, 7.0 ve 8.5) yüzen sistemdeki brokoli
bitkilerinin verimi, büyümesi ve fotosentez pigmentleri üzerine etkilerini
görmek amacıyla yürütülmüştür. Deneme, tamamen tesadüfi faktöriyel deneme
desenine göre üç tekerrürlü olarak tasarlanmıştır. Sonuçlar, brokoli
bitkilerinin biyokütle ve fotosentez pigmentleri bakımından, farklı seviyelerde
NI/Demir şelatı ve besin çözeltisi pH'sından önemli ölçüde etkilendiğini
göstermiştir. En yüksek taze baş ağırlığı, kontrol uygulamasından % 32.53 daha
fazla olarak, 50:50 oranındaki ve pH=7.0 besin çözeltisinin birlikte
uygulanmasında gözlenmiştir. Bu araştırmanın sonuçları, farklı oranlarda 50: 50 
seviyelerine
kadar NI/Demir şelatı kullanılmasının, brokoli bitkilerinin büyümesini ve
verimini arttırdığını göstermiştir. İlk rapor olarak, bu deneme sonuçları, nano
ölçekli sıfır değerli demir tozlarının brokoli bitkilerinin büyümesini ve
verimini artırabileceğini göstermiştir.

References

  • Carter, C. T., Grieve, C. M., & Poss J. A. (2005). Salinity effects on emergence, survival and ion accumulation of Limonium perezii. Journal of Plant Nutrition, 28, 1243–1257.
  • Carter, G. A., & Knapp A. K. (2001). Leaf optical properties in highest plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88 (4), 677-684.
  • Guo, F.A., Trannoy, N., & Lu, J. (2004). Analysis of thermal properties by scanning thermal microscopy in nanocrystallized iron surface induced by ultrasonic shot peening. Materials Science and Engineering: A, 369 (1-2), 36-42.
  • He, J., Aminda Chua, N.Y., & Qin, L. (2007). Interaction between iron stress and root-zone temperature on physiological aspects of aeroponically grown Chinese broccoli. Journal of Plant Nutrition, 31 (1), 173-192.
  • Judy, J. D., Unrine, J. M., Rao, W., Wirick, S., & Bertsch, P. M. (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environmental science and technology, 46 (15), 8467−8474.
  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior, and effects of nanoparticles in the environment. Environment Pollution, 150 (1), 5-22.Oviedo, C., & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny. Quimica Nova, 26 (6), 901−905.
  • Rauch, J., Kolch, W., Laurent, S., & Mahmoudi, M. (2013). Big signals from small particles: Regulation of cell signaling pathways by nanoparticles. Chemical reviews, 113 (5), 3391-3406.
  • Remya, N., Saino, H. V., Baiju, G., Maekawa, T., Yoshida, Y., & Sakthi Kumar, D. (2010). Nanoparticulate material delivery to plant. Plant Science, 179, 154–163.
  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry, 59 (8), 3485-3498.
  • Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2 (2), 112–113.
  • Tan, X. M., & Fugetsu, B. (2007). Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. Journal of Biomedical nanotechnology, 3, 285–288.
  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5 (1), 30−42.
  • Zeng, H. P., Zhao, Y. Z., Lu, Y. F., Li, D., & Zhang, J. (2017). Adsorption behaviors towards As and structural change of iron and manganese oxide sludge by thermal treatment. Environmental Science, 37 (8), 2986-2993.
  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10 (6), 713−717.
  • Zhu, R. R., Wang, S. L., Chao, J., Shi, D. L., Zhang, R., Sun, X. & Y., Yao, S. D. (2009). Bio-effects of nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Materials Science and Engineering C, 29 (3), 691−696.
  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental science and technology, 39 (5), 1378−1383.
  • Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental science and technology, 31 (7), 2154-2156.
  • Appleton, E. A. (1996). Nickel-Iron wall against contaminated groundwater. Environmental science and technology, 30, 536-539.
  • Bonetti, E., Del Bianco, L., Pasquini, L., & Sampaolesi, E. (1999). Thermal evolution of ball milled nanocrystalline iron. Nanostructured Materials, 12 (5-8): 685-688.
  • Cao, J., Wei L., Huang, Q., Wang, L., & Han, S. (1999). Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere, 38 (3), 565-571.
  • Dufkova, V. (1984). EDTA in algal culture media. Archiv for hydrobiologie. Supplement volumes. Algological Studies, 37, 479-492.
  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental science and technology, 47, 10645-10652.
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management.
  • Li, F., Vipulanandan C., Kishore, K., & Mohanty, K. K. (2003). Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223, 103-112.
  • Lichtenthaler, H. K., & Buschmann, C. (2001). Current Protocols in Food Analytical Chemistry. Unit F4.3.1-F4.3.8.
  • Oviedo, C., & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny. Quimica Nova, 26 (6), 901−905.
  • Pena-Olmos, J. E., & Casierra-Posada F. (2013). Photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var Italica) affected by excess iron. Orinoquia, 17 (1), 15-22.
  • Vose, P. 1982. Iron nutrition in plants: A world overview. Journal of Plant Nutrition, 5 (4−7), 233−249.
  • Yuan, G., Wang, X., Guo, R., & Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121 (4), 1014- 1019.
There are 29 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Edris Shabanı 0000-0002-4208-616X

Sahebali Bolandnazar 0000-0001-9396-7373

Hemattollah Pırdashtı This is me 0000-0002-1255-0371

Publication Date September 30, 2019
Acceptance Date June 27, 2019
Published in Issue Year 2019 Volume: 29 Issue: 3

Cite

APA Shabanı, E., Bolandnazar, S., & Pırdashtı, H. (2019). Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(3), 559-568. https://doi.org/10.29133/yyutbd.556395
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.