Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuzluluk Stresi altında Lathyrus sativus L.'nin Çimlenme ve Büyümesini İyileştirmede, Salisilik Asit ile Tohum Priming Uygulaması

Yıl 2020, Cilt: 30 Sayı: 1, 68 - 79, 31.03.2020
https://doi.org/10.29133/yyutbd.624649

Öz

: Ürünlerin tuzlu koşullar altında büyümeyi ve verimliliği sürdürme kabiliyetinin arttırılması, büyük önem taşır. Salisilik asit (SA) ile priming, tuzluluk stresi altındaki Lathyrus sativus'un çimlenme ve fizyolojik özellikleri üzerine etkisi, tamamen tesadüfi bir faktöriyel deneme deseninde incelenmiştir. Deneme, üç seviyede SA (0, 0.1 ve 0.2 mM) ve üç seviyede (0, 50 ve 100 mM) NaCl'den oluşmuştur. Tuzluluk seviyesinin ve SA priming etkisi, nihai çimlenme yüzdesi hariç, kaydedilen tüm faktörler üzerinde önemli bulunmuştur. Tuzluluk seviyesi arttıkça, tüm çimlenme ve fizyolojik özellikler kontrole göre azalırken, ortalama çimlenme süresi ve hücre ölümü yüzdesi artmıştır. Ayrıca, tuzluluk derecesi arttıkça, Hill reaksiyonu önemli ölçüde azalmıştır. Tuzluluk, 100 mM NaCl uygulamasında en güçlü etkilerini göstermiştir. SA ile tohum priming, çimlenme hız endeksini arttırmış, ortalama çimlenme süresini azaltmış ve yaprak nispi su içeriğini arttırmış; priming yapılmayan tohumlardan elde edilen bitkilere kıyasla taze ve kuru ağırlığı : Ürünlerin tuzlu koşullar altında büyümeyi ve verimliliği sürdürme kabiliyetinin arttırılması, büyük önem taşır. Salisilik asit (SA) ile priming, tuzluluk stresi altındaki Lathyrus sativus'un çimlenme ve fizyolojik özellikleri üzerine etkisi, tamamen tesadüfi bir faktöriyel deneme deseninde incelenmiştir. Deneme, üç seviyede SA (0, 0.1 ve 0.2 mM) ve üç seviyede (0, 50 ve 100 mM) NaCl'den oluşmuştur. Tuzluluk seviyesinin ve SA priming etkisi, nihai çimlenme yüzdesi hariç, kaydedilen tüm faktörler üzerinde önemli bulunmuştur. Tuzluluk seviyesi arttıkça, tüm çimlenme ve fizyolojik özellikler kontrole göre azalırken, ortalama çimlenme süresi ve hücre ölümü yüzdesi artmıştır. Ayrıca, tuzluluk derecesi arttıkça, Hill reaksiyonu önemli ölçüde azalmıştır. Tuzluluk, 100 mM NaCl uygulamasında en güçlü etkilerini göstermiştir. SA ile tohum priming, çimlenme hız endeksini arttırmış, ortalama çimlenme süresini azaltmış ve yaprak nispi su içeriğini arttırmış; priming yapılmayan tohumlardan elde edilen bitkilere kıyasla taze ve kuru ağırlığı artırmıştır. 0.2 mM SA içeren priming yapılmış tohumlarda fide canlılığı indeksi % 23.4 artmıştır. Özellikle 0.2 mM SA primingi, Hill reaksiyon hızını arttırmış ve hücre ölümü yüzdesini düşürmüştür. SA priming, tuzluluk stresi koşulları altında Lathyrus sativus L.'nin çimlenme özelliklerini, fide büyümesini ve fizyolojik özelliklerini iyileştirmek için pratik bir yaklaşım olarak kabul edilebilir

Kaynakça

  • Agarwal, S., Sairam, R. K. Srivastava, G. C., & Meena, R. C. (2005). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541–550.
  • Andrews, J. R., Fryer, M. J., & Baker, N. R. (1995). Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence. Journal of Experimental Botany, 46, 1195-1203.
  • AOSA. (1983). Seed vigor testing handbook. Contribution 32, Handbook on Seed Testing, AOSA, Lincoln, NE, USA.
  • Apostolova, E. L., Dobricova, A. G., Ivanova, P. I., Petkanchin, I. B., & Taneva, S. G. (2006). Relationship between the organization of the supercomplex and the function of the photosynthetic apparatus. Journal of Photochemistry and Photobioliogy, 83,114–122.
  • Baalbaki, R. Z., Zurayk, R. A., Bleik, S. N., & Talhuk, A. (1990). Germination and seedling development of drought susceptible wheat under moisture stress. Seed Science and Technology, 17, 291–302.
  • Baker, C. J., & Monck, N. M. (1994). An improved method for monitoring cell death in a cell suspension and leaf disk assays using Evans blue. Plant Cell, 39, 7–12.
  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379–386.
  • Bhattacharjee, S., & Mukherjee, A. K. (2002). Salt stress-induced cytosolute accumulation, antioxidant response and membrane deterioration in the three rice cultivars during early germination. Seed Science and Technology, 30, 279–286.
  • Bissati, K. E., Delphin, E., Murata, N., Etienne, A. L., & Kirilovsky, D. (2000). Photosystem II flouresence - quenching in cyanobacterrium Synechocystis PCC6803: involvement of two different mechanisms. Biochemicaet Biophysica Acta, 1457, 229-242.
  • Borsani, O., Valpuestan, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.
  • Brancalion, P. H. S., Novembre, A. D. L. C., Rodrigues, R. R., & Tay, D. (2008). Priming of Mimosa bimucronata seeds: a tropical tree species from Brazil. Acta Horticulturae, 82, 163–168.
  • Cavalcanti, F., Lima, J., Silva, S., Viegas, R., & Silveira, J. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164, 591–600.
  • Cicek N., & Cakirlar, H. (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology, 28, 66–74.
  • Cocks, P., Siddiqae, K., & Humbury, C. (2000). Lathyrus a new grain legume. RIRDS. Publication, NO.99/150.
  • Debez, A., Belghith, I., Pich, A., Taamalli, W., Abdelly, C., & Braun, H. P. (2018). High salinity impacts germination of the halophyte Cakile maritima but primes seeds for rapid germination upon stress release. Physiologia Plantarum, 164, 134–144.
  • Delavari, M., Enteshariand, Sh., Manoochehri Kalantari, Kh. (2014). Effects of Response of Ocimum basilicumto the interactive effect of salicylic acid and salinity stress. Iranian Journal of Plant Physiology, 4(2), 983-990.
  • Demir, I., & Van de Venter, H. A. (1999). The effect of priming treatments on the performance of watermelon (Citrillus lanatus (Thunb.) Matsum. & Nakai) seeds under temperature and osmotic stress. Seed Science and Technology, 27, 871–875.
  • Dolatabadian, A., Sanav, S. A. M. M., & Sharif, M. (2009). Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 59,456–464
  • Dubey, R. S. (1999). Protein synthesis by plants under stressful conditions. In Pessarakli, M. (Ed.) Handbook of Plant and Crop Stress, Marcel Dekker Inc, New York, USA, pp, 153–167.
  • Ellis, R. A., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373–409.
  • El-Shahaby, O. A., Nemat Alla, M. M., Younis, M. E., & El-Bastawisy, Z. M. (2003). Effect of kinetin on photosynthetic activity and carbohydrate content in waterlogged or seawater-treated Vigna sinensis and Zea mays plants. Plant Biosystems, 136, 277–288.
  • El-Shintinawy, F. (2000). Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica, 38, 615–620.
  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215–224.
  • Entesari, M., Sharif-Zahed, F., Zare, S., Farhangfar, M., & Dashtaki, M. (2012). Effects of seed priming on mung been (Vigna radiate) cultivars with salicylic acid and potassium nitrate under salinity stress. International Journal of Agricultural Research and Reviews , 2, 926-932
  • Ervin, E. H., Zhang, X., & Schmidt, R. E. (2005). Exogenous salicylic acid enhances post-transplant success of heated Kentucky bluegrass and tall fescue sod. Crop Science, 45(1), 240–244.
  • FAO. (2008). FAO land and plant nutrition management service. Available online at: http://www.fao.org/ag/agl/agll/spush/
  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.
  • Farkhonded, R. Nabizadeh, E., & Jalilnezhad, N. (2012). Effect of salinity stress on proline content, membrane stability and water relation in two sugar beet cultivars. International Journal of Agricultural Science, 2, 385–392.
  • Foti, R., Abureni, K., Tigere, A., Gotosa, J., & Gere, J. (2008). The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. Journal of Arid Environments, 72, 1127–1130.
  • Ghasemi-Golazani, K., Ghadordooz-Jeddi, A., Nasrolahzadeh. S., & Moghadam, M. (2010). Effect of hydropriming duration on seedling vigour and grain yield of pinto bean (Phaseolus Vulgaris L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj, 38, 109–113.
  • Hale, M. C., & Oreuh, D. M. (1987). The Physiology of Plant under Stress. Chicester, UK: Jon Wiley & Sons, pp: 206.
  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental them of aerobic life. Plant Physiology, 141, 312–322.
  • Hamid, H.‚ Rehman, K., & Ashraf, Y. (2010). Salicylic acid–induced growth and biochemical changes in salt-stressed wheat. Commun. Soil Science and Plant Analysis, 41, 373-389.
  • Hui-Jie, Z., Xue-Juan, Z. H., Pei-Fang, M., Yue-Xia, W., Wei-Wei, H., Hong, L., & Yi-Dan, Z. (2011). Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecologica Sinica, 31, 259–263.
  • Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38–46.
  • Jini, D., & Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24, 97–108.
  • Kerantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.
  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Science and Technology, 31, 715–725.
  • Khan, M. A., & Ungar, L. A. (2001). Seed germination of Triglochin maritime as influenced by salinity and dormancy relieving compounds. Biologia Plantarum, 44, 301–303.
  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.
  • Khan, M. I., Fatma M., Per T. S., Anjum, N. A., & Khan N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462.
  • Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture and Biology, 6, 1–8.
  • Korkmaz, A., Uzunlu, M., & Demirkairan, A. R. (2007). Treatment with acetylsalicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29, 503–508.
  • Kruk, J., Czytko, H. H., Oettmeier, W., & Trebest, A. (2005). Tocopherol as singlet oxygen scavenger in photosystem II. Plant Physiology, 162, 749-757.
  • Lazanyi, J. (2000). Grass pea and green manure effects in the Great Hungarian Plain. Lathyrus Newsletter, 1, 28–30.
  • Lee, S., Kim, S. G., & Park, C.M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637.
  • Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chedfor, F., & Giraudat, J. (1994). Arabidopsis ABA-response gene ABI1: features of a calcium-modulated protein phosphatase. Plant Science, 264, 1448–1452.
  • Lu, C. M., & Vonshak, A. (2002). Effect of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114(3), 405–413.
  • Maxwell, K,. & Johnson, G. (2000). Chlorophyll fluorescence a practical guide. Journal experimental botany, 51, 659-668.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., & Therios, I. (2006). Boron‐induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56, 54–62.
  • Munns, R., & Tester, M., 2008. Mechanisms of salinity tolerance. Annual Reviews of Plant Biology, 59, 651–681.
  • Nascimento, W. M., & Aragao, F. A. S. (2004). Muskmelon seed priming in relation to seed vigor. Scientia Agricola, 61, 114–117.
  • Nemeth, M., Janda, T., Hovarth, E., Paldi, E., & Szali, G. (2002). Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162, 569–574.
  • Nourafcan, H. (2015). Effect of salicylic acid on salinity stress tolerance improvement of peppermint (Mentha piperita L.) in greenhouse. Modern Science of Sustainable Agriculture Journal, 10(2), 85-95. [in Persian with English abstract]
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants. A-review. Ecotoxicology and Environmental Safety, 60, 324–349.
  • Patsikka, E., Aro, E. M., & Tyystjarvi, E. (2001). Mechanism of copper-enhanced photoinhibition in thylakoid membranes. Physiologia Plantarum, 113, 142–150.
  • Rajasekaran, L. R., Stiles, A., Surette, M. A., Sturz, A. V., Blake, T. J., Caldwell, C., & Nowak, J. (2002). Stand establishment technologies for processing carrots: effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Canadian Journal of Plant Science, 82, 443–450.
  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037–1046.
  • Samea-Andabjadid, S., Ghassemi-Golezani, K., Nasrollahzadeh, S., & Najafi, N. (2018). Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. Acta Biologica Hungarica, 69, 86–96.
  • Senarajna, T., Touchel, D., Bumm, E., & Dixon, K. (2000). Acetyl salicylic acid induces multiple stress tolerance in bean and plants. Plant Growth Regulation, 30,157–161.
  • Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion Plant Biology, 6(4), 365–371.
  • Shakirova, F. M., Shakbbutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, K. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedling induces by salicylic acid and salinity. Plant Science, 164, 317–322.
  • Shamsadin Saeid, M., Farahbakhsh, H., & Maghsodi Mude, A. A. (2008). Effects of salinity stress on germination, vegetative growth and some of physiological traits canola cultivars. Journal of Science and Technology of Agriculture and Natural Resources, 11, 191–202.
  • Singh, P. K., Shahi, S. K., & Singh, A. P. (2015). Effects of salt stress on physico-chemical changes in maize (Zea maysl.) plants Response to Salicylic Acid. Indian Journal of Plant Sciences, 4(1), 69-77.
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260.
  • Wojtyla, L., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Different modes of hydrogen peroxide action during seed germination. Frontiers in Plant Science , 7, 66.
  • Weatherley, P. E. (1950). Studies in the water relations of cotton. 1. The field measurement of water deficits in leaves. New Phytologist, 49, 81–97.
  • Xia, J., Li, Y., & Zou, D. (2004). Effect of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany, 80, 129–137.
  • Zeid, I. M. (2009). Trehalose as osmoprotectant for maize under salinity-induced stress research. Journal of Agriculture and Biological Sciences, 5, 613–622.

Seed Priming with Salicylic Acid Improves Germination and Growth of Lathyrus sativus L. under Salinity Stress

Yıl 2020, Cilt: 30 Sayı: 1, 68 - 79, 31.03.2020
https://doi.org/10.29133/yyutbd.624649

Öz

Increasing the ability of crops to maintain growth and productivity under saline conditions is of paramount importance. The effect of salicylic acid (SA) priming on germination and physiological traits of Lathyrus sativus under salinity stress was studied in a factorial experiment based on a completely randomized design. The experimental treatments composed of SA at three levels (0, 0.1, and 0.2 mM) and NaCl salinity at three levels (0, 50, and 100 mM). The effect of salinity level and SA priming was significant on all recorded factors, except from final germination percentage. As salinity level increased, all germination and physiological traits declined compared with control, whereas the mean germination time and percentage of cell death were increased. Moreover, as salinity was intensified, the Hill reaction was decreased significantly. Salinity exhibited the strongest effects at NaCl rate of 100 mM. Seed priming with SA increased germination speed index, reduced mean germination time, and increased leaf relative water content, seedling fresh and dry weight compared with plants from non-primed seeds. Seedling vigor index was increased by 23.4% in primed seeds with 0.2 mM SA. SA priming especially at 0.2 mM rate increased the Hill reaction rate and reduced percentage of cell death. SA priming could be regarded as a practical approach to improve germination traits, seedling growth, and physiological traits of Lathyrus sativus L. under salinity stress conditions.

Kaynakça

  • Agarwal, S., Sairam, R. K. Srivastava, G. C., & Meena, R. C. (2005). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541–550.
  • Andrews, J. R., Fryer, M. J., & Baker, N. R. (1995). Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence. Journal of Experimental Botany, 46, 1195-1203.
  • AOSA. (1983). Seed vigor testing handbook. Contribution 32, Handbook on Seed Testing, AOSA, Lincoln, NE, USA.
  • Apostolova, E. L., Dobricova, A. G., Ivanova, P. I., Petkanchin, I. B., & Taneva, S. G. (2006). Relationship between the organization of the supercomplex and the function of the photosynthetic apparatus. Journal of Photochemistry and Photobioliogy, 83,114–122.
  • Baalbaki, R. Z., Zurayk, R. A., Bleik, S. N., & Talhuk, A. (1990). Germination and seedling development of drought susceptible wheat under moisture stress. Seed Science and Technology, 17, 291–302.
  • Baker, C. J., & Monck, N. M. (1994). An improved method for monitoring cell death in a cell suspension and leaf disk assays using Evans blue. Plant Cell, 39, 7–12.
  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379–386.
  • Bhattacharjee, S., & Mukherjee, A. K. (2002). Salt stress-induced cytosolute accumulation, antioxidant response and membrane deterioration in the three rice cultivars during early germination. Seed Science and Technology, 30, 279–286.
  • Bissati, K. E., Delphin, E., Murata, N., Etienne, A. L., & Kirilovsky, D. (2000). Photosystem II flouresence - quenching in cyanobacterrium Synechocystis PCC6803: involvement of two different mechanisms. Biochemicaet Biophysica Acta, 1457, 229-242.
  • Borsani, O., Valpuestan, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.
  • Brancalion, P. H. S., Novembre, A. D. L. C., Rodrigues, R. R., & Tay, D. (2008). Priming of Mimosa bimucronata seeds: a tropical tree species from Brazil. Acta Horticulturae, 82, 163–168.
  • Cavalcanti, F., Lima, J., Silva, S., Viegas, R., & Silveira, J. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164, 591–600.
  • Cicek N., & Cakirlar, H. (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology, 28, 66–74.
  • Cocks, P., Siddiqae, K., & Humbury, C. (2000). Lathyrus a new grain legume. RIRDS. Publication, NO.99/150.
  • Debez, A., Belghith, I., Pich, A., Taamalli, W., Abdelly, C., & Braun, H. P. (2018). High salinity impacts germination of the halophyte Cakile maritima but primes seeds for rapid germination upon stress release. Physiologia Plantarum, 164, 134–144.
  • Delavari, M., Enteshariand, Sh., Manoochehri Kalantari, Kh. (2014). Effects of Response of Ocimum basilicumto the interactive effect of salicylic acid and salinity stress. Iranian Journal of Plant Physiology, 4(2), 983-990.
  • Demir, I., & Van de Venter, H. A. (1999). The effect of priming treatments on the performance of watermelon (Citrillus lanatus (Thunb.) Matsum. & Nakai) seeds under temperature and osmotic stress. Seed Science and Technology, 27, 871–875.
  • Dolatabadian, A., Sanav, S. A. M. M., & Sharif, M. (2009). Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 59,456–464
  • Dubey, R. S. (1999). Protein synthesis by plants under stressful conditions. In Pessarakli, M. (Ed.) Handbook of Plant and Crop Stress, Marcel Dekker Inc, New York, USA, pp, 153–167.
  • Ellis, R. A., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373–409.
  • El-Shahaby, O. A., Nemat Alla, M. M., Younis, M. E., & El-Bastawisy, Z. M. (2003). Effect of kinetin on photosynthetic activity and carbohydrate content in waterlogged or seawater-treated Vigna sinensis and Zea mays plants. Plant Biosystems, 136, 277–288.
  • El-Shintinawy, F. (2000). Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica, 38, 615–620.
  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215–224.
  • Entesari, M., Sharif-Zahed, F., Zare, S., Farhangfar, M., & Dashtaki, M. (2012). Effects of seed priming on mung been (Vigna radiate) cultivars with salicylic acid and potassium nitrate under salinity stress. International Journal of Agricultural Research and Reviews , 2, 926-932
  • Ervin, E. H., Zhang, X., & Schmidt, R. E. (2005). Exogenous salicylic acid enhances post-transplant success of heated Kentucky bluegrass and tall fescue sod. Crop Science, 45(1), 240–244.
  • FAO. (2008). FAO land and plant nutrition management service. Available online at: http://www.fao.org/ag/agl/agll/spush/
  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.
  • Farkhonded, R. Nabizadeh, E., & Jalilnezhad, N. (2012). Effect of salinity stress on proline content, membrane stability and water relation in two sugar beet cultivars. International Journal of Agricultural Science, 2, 385–392.
  • Foti, R., Abureni, K., Tigere, A., Gotosa, J., & Gere, J. (2008). The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. Journal of Arid Environments, 72, 1127–1130.
  • Ghasemi-Golazani, K., Ghadordooz-Jeddi, A., Nasrolahzadeh. S., & Moghadam, M. (2010). Effect of hydropriming duration on seedling vigour and grain yield of pinto bean (Phaseolus Vulgaris L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj, 38, 109–113.
  • Hale, M. C., & Oreuh, D. M. (1987). The Physiology of Plant under Stress. Chicester, UK: Jon Wiley & Sons, pp: 206.
  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental them of aerobic life. Plant Physiology, 141, 312–322.
  • Hamid, H.‚ Rehman, K., & Ashraf, Y. (2010). Salicylic acid–induced growth and biochemical changes in salt-stressed wheat. Commun. Soil Science and Plant Analysis, 41, 373-389.
  • Hui-Jie, Z., Xue-Juan, Z. H., Pei-Fang, M., Yue-Xia, W., Wei-Wei, H., Hong, L., & Yi-Dan, Z. (2011). Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecologica Sinica, 31, 259–263.
  • Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38–46.
  • Jini, D., & Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24, 97–108.
  • Kerantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.
  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Science and Technology, 31, 715–725.
  • Khan, M. A., & Ungar, L. A. (2001). Seed germination of Triglochin maritime as influenced by salinity and dormancy relieving compounds. Biologia Plantarum, 44, 301–303.
  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.
  • Khan, M. I., Fatma M., Per T. S., Anjum, N. A., & Khan N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462.
  • Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture and Biology, 6, 1–8.
  • Korkmaz, A., Uzunlu, M., & Demirkairan, A. R. (2007). Treatment with acetylsalicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29, 503–508.
  • Kruk, J., Czytko, H. H., Oettmeier, W., & Trebest, A. (2005). Tocopherol as singlet oxygen scavenger in photosystem II. Plant Physiology, 162, 749-757.
  • Lazanyi, J. (2000). Grass pea and green manure effects in the Great Hungarian Plain. Lathyrus Newsletter, 1, 28–30.
  • Lee, S., Kim, S. G., & Park, C.M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637.
  • Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chedfor, F., & Giraudat, J. (1994). Arabidopsis ABA-response gene ABI1: features of a calcium-modulated protein phosphatase. Plant Science, 264, 1448–1452.
  • Lu, C. M., & Vonshak, A. (2002). Effect of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114(3), 405–413.
  • Maxwell, K,. & Johnson, G. (2000). Chlorophyll fluorescence a practical guide. Journal experimental botany, 51, 659-668.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., & Therios, I. (2006). Boron‐induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56, 54–62.
  • Munns, R., & Tester, M., 2008. Mechanisms of salinity tolerance. Annual Reviews of Plant Biology, 59, 651–681.
  • Nascimento, W. M., & Aragao, F. A. S. (2004). Muskmelon seed priming in relation to seed vigor. Scientia Agricola, 61, 114–117.
  • Nemeth, M., Janda, T., Hovarth, E., Paldi, E., & Szali, G. (2002). Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162, 569–574.
  • Nourafcan, H. (2015). Effect of salicylic acid on salinity stress tolerance improvement of peppermint (Mentha piperita L.) in greenhouse. Modern Science of Sustainable Agriculture Journal, 10(2), 85-95. [in Persian with English abstract]
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants. A-review. Ecotoxicology and Environmental Safety, 60, 324–349.
  • Patsikka, E., Aro, E. M., & Tyystjarvi, E. (2001). Mechanism of copper-enhanced photoinhibition in thylakoid membranes. Physiologia Plantarum, 113, 142–150.
  • Rajasekaran, L. R., Stiles, A., Surette, M. A., Sturz, A. V., Blake, T. J., Caldwell, C., & Nowak, J. (2002). Stand establishment technologies for processing carrots: effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Canadian Journal of Plant Science, 82, 443–450.
  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037–1046.
  • Samea-Andabjadid, S., Ghassemi-Golezani, K., Nasrollahzadeh, S., & Najafi, N. (2018). Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. Acta Biologica Hungarica, 69, 86–96.
  • Senarajna, T., Touchel, D., Bumm, E., & Dixon, K. (2000). Acetyl salicylic acid induces multiple stress tolerance in bean and plants. Plant Growth Regulation, 30,157–161.
  • Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion Plant Biology, 6(4), 365–371.
  • Shakirova, F. M., Shakbbutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, K. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedling induces by salicylic acid and salinity. Plant Science, 164, 317–322.
  • Shamsadin Saeid, M., Farahbakhsh, H., & Maghsodi Mude, A. A. (2008). Effects of salinity stress on germination, vegetative growth and some of physiological traits canola cultivars. Journal of Science and Technology of Agriculture and Natural Resources, 11, 191–202.
  • Singh, P. K., Shahi, S. K., & Singh, A. P. (2015). Effects of salt stress on physico-chemical changes in maize (Zea maysl.) plants Response to Salicylic Acid. Indian Journal of Plant Sciences, 4(1), 69-77.
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260.
  • Wojtyla, L., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Different modes of hydrogen peroxide action during seed germination. Frontiers in Plant Science , 7, 66.
  • Weatherley, P. E. (1950). Studies in the water relations of cotton. 1. The field measurement of water deficits in leaves. New Phytologist, 49, 81–97.
  • Xia, J., Li, Y., & Zou, D. (2004). Effect of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany, 80, 129–137.
  • Zeid, I. M. (2009). Trehalose as osmoprotectant for maize under salinity-induced stress research. Journal of Agriculture and Biological Sciences, 5, 613–622.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

Sina Siavash Moghaddam 0000-0001-8643-8991

Amir Rahimi 0000-0002-8200-3103

Latifeh Pourakbar Bu kişi benim 0000-0002-2623-7394

Faegheh Jangjoo Bu kişi benim 0000-0002-7308-1425

Yayımlanma Tarihi 31 Mart 2020
Kabul Tarihi 5 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 30 Sayı: 1

Kaynak Göster

APA Siavash Moghaddam, S., Rahimi, A., Pourakbar, L., Jangjoo, F. (2020). Seed Priming with Salicylic Acid Improves Germination and Growth of Lathyrus sativus L. under Salinity Stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 68-79. https://doi.org/10.29133/yyutbd.624649

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.