Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Endophytic Bacteria on Some Physiological Traits and Nutrient Contents in Pepper Seedlings under Drought Stress

Yıl 2021, Cilt: 31 Sayı: 1, 237 - 245, 30.03.2021
https://doi.org/10.29133/yyutbd.849260

Öz

The present study was conducted to determine the effects of the endophytic bacteria (EB) on some physiological traits and nutrient contents in pepper (Capsicum annuum L.) seedlings grown under drought stress. The pepper cv. Mostar F1 and two EB isolates [Bacillus thurigiensis (CA41/1) and Ochrobactrum sp. (CB36/1)] were employed under drought stress condition. The first EB application was at a density of 108 CFU mL-1 as 10 mL plant-1 at the first cotyledon leaf stage and the second one was two weeks later. The seedlings were irrigated by gravimetric method on a regular basis every two days. Twenty days after EB application, irrigation was terminated completely in half of the applications in order to form drought stress for 7 days. Among the studied traits, membrane damage index, leaf relative water content, amount of malondialdehyde, catalase enzyme activity, ascorbate peroxidase enzyme activity, and the contents of some mineral elements (K, Ca and Mg) were significantly different in drought stressed seedlings compared the control (regularly irrigated) seedlings. EB (Especially CA41/1) had generally positive effects on most studied traits, whereas drought stress had generally negative effects on the mentioned traits. There might be a high potential of EB fighting against drought stress in pepper; however, one keeps in mind that there is variation in the performance of EB; therefore, the best EB combinations have to be determined even for cultivars in each plant species in future studies.

Kaynakça

  • Akkopru A., (2012). Researches on the biological control of cucumber bacterial leaf spot disease (Pseudomonas syringae pv. Lachrymans) with some root bacteria. Unpublished Ph.D. Thesis. Ege University Institute of Natural and Applied Sciences (in Turkish).
  • Akkopru A., K. Cakar., & A. Husseini, (2018). Effects of endophytic bacteria on disease and growth in plants under biotic stress. YYU J AGR SCI, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(2): 200-208.
  • Aktas, H., K. Abak., & S. Sensoy, (2009). Genetic diversity in some Turkish pepper (Capsicum annuum L.) genotypes revealed by AFLP analyses. African Journal of Biotechnology, 8(18): 4378-4386.
  • Ansary M.H., H.A. Rahmani, M.R. Ardakani, F. Paknejad, D. Habibi., & S. Mafakheri, (2012). Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals Biol Res. 3 (2):1054-1062.
  • Chakraborty U., B.N. Chakraborty, A.P. Chakraborty., & P.L. Dey, (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechn 29:789–803. Dagdelen, N., E. Yılmaz, F. Sezgin., & T. Gürbüz. (2004). Effects of water stress at different growth stages on processing pepper (Capsicum annuum cv. kapija) yield, water use and quality characteristics. Pak J Biol Sci. 7(12): 2167-2172.
  • Dlugokecka E., & A. Kacperska-Palacz (1978). Re-examination of electrical conductivity method for estimation of drought injury. Biol Plantarum (Prague). 20: 262-267.
  • Ertek, A., S. Sensoy, I. Gedik., & C. Kucukyumuk. (2007). Irrigation scheduling for green pepper (Capsicum annuum L.) grown by field condition by using class A pan evaporation value. American-Eurasian J. Agric. Environmental Sci. 2(4): 349-358.
  • Fan S., & T. Blake. (1994). Abscisic acid induced electrolyte leakage in woody species with contrasting ecological requirements. Physiol Plantarum. 90: 414-419.
  • Guneri Bagci, E. (2010). Nohut çeşitlerinde kuraklığa bağlı oksidatif stresin fizyolojik ve biyokimyasal parametrelerle belirlenmesi (Doktora tezi). Ankara Üniversitesi Fen Bilimleri. Ankara.403s (in Turkish).
  • Hardoim P.R., L.S. van Overbeek., & J.Dvan Elsas. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16(10): 463-471.
  • Heath R.L., & L. Packer. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archiv of Biochem Biophysics, 125(1): 189-198.
  • Jebara S., M. Jebara, F. Limam., & M.E. Aouani. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol. 162(8): 929-936
  • Kabay, T., (2014). Determination of drought and high temperature tolerant and sensitive genotypes in Van Lake Basin beans Unpublished Ph.D. Thesis. Van YYU University Institute of Natural and Applied Sciences, (in Turkish).
  • Kabay, T., (2018). Potasyum Uygulamalarının Yüksek Sıcaklığa Hassas Fasulye Genotiplerinde Klorofil İyon ve Enzim Aktivite Değişimlerine Etkileri. YYU J AGR SCI, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(3): 311-316.
  • Kabay, T., & S. Sensoy. (2016). Enzyme, chlorophyl and ion changes in some common bean genotypes by drought stress. YYU J AGR SCI, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(3): 380-395.
  • Kabay, T., & S. Sensoy. (2017). Enzyme, chlorophyll and ion changes in some common bean genotypes by high temperature stress. Ege Univ J Agr Fac. 54(4): 429-437.
  • Kabay, T., C. Erdinc., & S. Sensoy. (2017). Effects of drought stress on plant growth parameters, membrane damage index and nutrient content in common bean genotypes. JAPS, Journal of Animal and Plant Sciences, 27(3): 940-952.
  • Kacar, B. (1994). Bitki ve toprağın kimyasal analizleri. Ankara Ünİversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı.
  • Kacar, B., & A. Inal. (2008). Plant Analysis. Nobel Yayın Dağıtım. (in Turkish).
  • Kohler, J., J.A. Hernández, F. Fuensanta Caravaca., & A. Roldán. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Function Plant Biol. (35): 141–151.
  • Kumari, P., M. Meena., & R.S. Upadhyay. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocataly & Agr Biotech. 16: 155-162.
  • Kusvuran, S., (2010). Relationships between physiological mechanisms for drought and salinity tolerance of melons. Unpublished Ph.D. Thesis. Çukurova University Institute of Natural and Applied Sciences, (in Turkish).
  • Kusvuran, S., & H.Y. Dasgan. (2017). effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris l. Legume Res. 40(1): 55-62.
  • Okturen F,. & Sonmez S. (2005). Bitki besin maddeleri ile bazı bitki büyüme düzenleyicileri (hormonlar) arasındaki ilişkiler. Derim, 22(2): 20-32 (in Turkish).
  • Ozaktan, H., A. Gul, B. Cakir, L. Yolageldi, A., & Akkopru. (2015). Possibilities of Using Bacterial Endophytes in Cucumber Growing as Bio Fertilizers and Biopesticides.Tubitak-COST 111O505 project (in Turkish) (COST Action FA1103: Endophytes in Biotechnology and Agriculture) p. 149.
  • Ozturk, K., (2002). Global climate change and its potential impact on Turkey GU Journal of Gazi Education Faculty 22(1): 47-65 (in Turkish).
  • Rosenblueth, M., & E. Martínez-Romero. (2006). Bacterial endophytes and their interactions with hosts. Mol Plant-microbe Inter. 19(8): 827-837.
  • Saharan, B.S., & V. Nehra. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res. 21(1): 30.
  • Sairam, R.K., G.C. Srivastava., & D.C. Saxena. (2000). Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plantarum, 43(2):245-251.
  • Sarma, R.K., & R. Saikia. (2014). Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil. 377:111–126.
  • Sensoy, S., Ertek, A., Gedik, I., & Kucukyumuk, C. (2007). Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agricultural Water Management, 88(1-3), 269-274.
  • Shewfelt, R.L., & A.C. Purvis. (1995). Toward a comprehensive model for lipid peroxidation in plant tissue disorders. HortSci. 30: 213-218.
  • Singh, D., N. Geat, M.V.S. Rajawat, R. Prasanna, A. Kar, A.M. Singh., & A.K. Saxena. (2018). Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Annals Microbiol. 68(12): 815-833.
  • Turkes, M., Sumer, U. M., & Cetiner, G. (2000). Global climate change and its possible effects. ministry of environment, united nations framework convention on climate change, Seminar Notes, 7-24 (in Turkish),
  • Turkmen, O., S.,. Demir., & S. Sensoy. (2005). Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions. J Biological Sci. 5 (5): 568-574.
  • Van Loon., (2007). Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243-254). Springer, Dordrecht.
  • Win, K.T., F. Tanaka, K. Okazaki., & Y. Ohwaki. (2018). The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry. 127, 599-607.
  • Yildirim, O., R. Yanmaz., & H. Orta., (1994) Effect of different irrigation methods and irrigation regimes on pepper yield. University of Ankara. Publications of Faculty of Agriculture:1369. Scientific Research Reports: 758.

Endofitik Bakterilerin Kuraklık Stresi Altındaki Biber Fidelerinin Bazı Fizyolojik Özellikleri ve Besin İçerikleri Üzerine Etkileri

Yıl 2021, Cilt: 31 Sayı: 1, 237 - 245, 30.03.2021
https://doi.org/10.29133/yyutbd.849260

Öz

Bu çalışma, kuraklık stresi altında yetiştirilen biber (Capsicum annuum L.) fidelerinde endofitik bakterilerin (EB) bazı fizyolojik özellikler ve besin içerikleri üzerine etkilerini belirlemek amacıyla yapılmıştır. Mostar F1 Biber çeşidi, iki EB izolatı [Bacillus thurigiensis (CA41 / 1) ve Ochrobactrum sp. (CB36 / 1)] kuraklık stresi altında kullanılmıştır. İlk EB uygulaması, ilk kotiledon yaprağı aşamasında 10 mL/bitki olarak 108 CFU/mL yoğunlukta ve ikincisi ise iki hafta sonra yapılmıştır. Fideler, iki günde bir düzenli olarak gravimetrik yöntemle sulanmıştır. EB uygulamasından yirmi gün sonra, 7 günlük kuraklık stresi oluşturmak için uygulamaların yarısında sulamaya tamamen son verilmiştir. Çalışılan özellikler arasında, kuraklık stresi altındaki fidelerde kontrol (düzenli olarak sulanan) fideler ile karşılaştırıldığında, membran zararlanma indeksi, yaprak oransal su içeriği, malondialdehit miktarı, katalaz enzim aktivitesi, askorbat peroksidaz enzim aktivitesi ve bazı mineral elementlerin içerikleri (K, Ca ve Mg) önemli ölçüde farklı bulunmuştur. EB'ler (Özellikle CA41 / 1), incelenen özelliklerin çoğunda genel olarak olumlu etkilere sahipken, kuraklık stresi belirtilen özellikler üzerinde genellikle olumsuz etkilere yol açmıştır. Biberde kuraklık stresine karşı savaşan yüksek bir EB potansiyeli olabilir; ancak, EB'lerin performansında farklılıklar olduğu unutulmamalıdır; bu nedenle, en iyi EB kombinasyonları, gelecekteki çalışmalarda her bitki türündeki çeşitler için belirlenmelidir.

Kaynakça

  • Akkopru A., (2012). Researches on the biological control of cucumber bacterial leaf spot disease (Pseudomonas syringae pv. Lachrymans) with some root bacteria. Unpublished Ph.D. Thesis. Ege University Institute of Natural and Applied Sciences (in Turkish).
  • Akkopru A., K. Cakar., & A. Husseini, (2018). Effects of endophytic bacteria on disease and growth in plants under biotic stress. YYU J AGR SCI, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(2): 200-208.
  • Aktas, H., K. Abak., & S. Sensoy, (2009). Genetic diversity in some Turkish pepper (Capsicum annuum L.) genotypes revealed by AFLP analyses. African Journal of Biotechnology, 8(18): 4378-4386.
  • Ansary M.H., H.A. Rahmani, M.R. Ardakani, F. Paknejad, D. Habibi., & S. Mafakheri, (2012). Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals Biol Res. 3 (2):1054-1062.
  • Chakraborty U., B.N. Chakraborty, A.P. Chakraborty., & P.L. Dey, (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechn 29:789–803. Dagdelen, N., E. Yılmaz, F. Sezgin., & T. Gürbüz. (2004). Effects of water stress at different growth stages on processing pepper (Capsicum annuum cv. kapija) yield, water use and quality characteristics. Pak J Biol Sci. 7(12): 2167-2172.
  • Dlugokecka E., & A. Kacperska-Palacz (1978). Re-examination of electrical conductivity method for estimation of drought injury. Biol Plantarum (Prague). 20: 262-267.
  • Ertek, A., S. Sensoy, I. Gedik., & C. Kucukyumuk. (2007). Irrigation scheduling for green pepper (Capsicum annuum L.) grown by field condition by using class A pan evaporation value. American-Eurasian J. Agric. Environmental Sci. 2(4): 349-358.
  • Fan S., & T. Blake. (1994). Abscisic acid induced electrolyte leakage in woody species with contrasting ecological requirements. Physiol Plantarum. 90: 414-419.
  • Guneri Bagci, E. (2010). Nohut çeşitlerinde kuraklığa bağlı oksidatif stresin fizyolojik ve biyokimyasal parametrelerle belirlenmesi (Doktora tezi). Ankara Üniversitesi Fen Bilimleri. Ankara.403s (in Turkish).
  • Hardoim P.R., L.S. van Overbeek., & J.Dvan Elsas. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16(10): 463-471.
  • Heath R.L., & L. Packer. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archiv of Biochem Biophysics, 125(1): 189-198.
  • Jebara S., M. Jebara, F. Limam., & M.E. Aouani. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol. 162(8): 929-936
  • Kabay, T., (2014). Determination of drought and high temperature tolerant and sensitive genotypes in Van Lake Basin beans Unpublished Ph.D. Thesis. Van YYU University Institute of Natural and Applied Sciences, (in Turkish).
  • Kabay, T., (2018). Potasyum Uygulamalarının Yüksek Sıcaklığa Hassas Fasulye Genotiplerinde Klorofil İyon ve Enzim Aktivite Değişimlerine Etkileri. YYU J AGR SCI, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(3): 311-316.
  • Kabay, T., & S. Sensoy. (2016). Enzyme, chlorophyl and ion changes in some common bean genotypes by drought stress. YYU J AGR SCI, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(3): 380-395.
  • Kabay, T., & S. Sensoy. (2017). Enzyme, chlorophyll and ion changes in some common bean genotypes by high temperature stress. Ege Univ J Agr Fac. 54(4): 429-437.
  • Kabay, T., C. Erdinc., & S. Sensoy. (2017). Effects of drought stress on plant growth parameters, membrane damage index and nutrient content in common bean genotypes. JAPS, Journal of Animal and Plant Sciences, 27(3): 940-952.
  • Kacar, B. (1994). Bitki ve toprağın kimyasal analizleri. Ankara Ünİversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı.
  • Kacar, B., & A. Inal. (2008). Plant Analysis. Nobel Yayın Dağıtım. (in Turkish).
  • Kohler, J., J.A. Hernández, F. Fuensanta Caravaca., & A. Roldán. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Function Plant Biol. (35): 141–151.
  • Kumari, P., M. Meena., & R.S. Upadhyay. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocataly & Agr Biotech. 16: 155-162.
  • Kusvuran, S., (2010). Relationships between physiological mechanisms for drought and salinity tolerance of melons. Unpublished Ph.D. Thesis. Çukurova University Institute of Natural and Applied Sciences, (in Turkish).
  • Kusvuran, S., & H.Y. Dasgan. (2017). effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris l. Legume Res. 40(1): 55-62.
  • Okturen F,. & Sonmez S. (2005). Bitki besin maddeleri ile bazı bitki büyüme düzenleyicileri (hormonlar) arasındaki ilişkiler. Derim, 22(2): 20-32 (in Turkish).
  • Ozaktan, H., A. Gul, B. Cakir, L. Yolageldi, A., & Akkopru. (2015). Possibilities of Using Bacterial Endophytes in Cucumber Growing as Bio Fertilizers and Biopesticides.Tubitak-COST 111O505 project (in Turkish) (COST Action FA1103: Endophytes in Biotechnology and Agriculture) p. 149.
  • Ozturk, K., (2002). Global climate change and its potential impact on Turkey GU Journal of Gazi Education Faculty 22(1): 47-65 (in Turkish).
  • Rosenblueth, M., & E. Martínez-Romero. (2006). Bacterial endophytes and their interactions with hosts. Mol Plant-microbe Inter. 19(8): 827-837.
  • Saharan, B.S., & V. Nehra. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res. 21(1): 30.
  • Sairam, R.K., G.C. Srivastava., & D.C. Saxena. (2000). Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plantarum, 43(2):245-251.
  • Sarma, R.K., & R. Saikia. (2014). Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil. 377:111–126.
  • Sensoy, S., Ertek, A., Gedik, I., & Kucukyumuk, C. (2007). Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agricultural Water Management, 88(1-3), 269-274.
  • Shewfelt, R.L., & A.C. Purvis. (1995). Toward a comprehensive model for lipid peroxidation in plant tissue disorders. HortSci. 30: 213-218.
  • Singh, D., N. Geat, M.V.S. Rajawat, R. Prasanna, A. Kar, A.M. Singh., & A.K. Saxena. (2018). Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Annals Microbiol. 68(12): 815-833.
  • Turkes, M., Sumer, U. M., & Cetiner, G. (2000). Global climate change and its possible effects. ministry of environment, united nations framework convention on climate change, Seminar Notes, 7-24 (in Turkish),
  • Turkmen, O., S.,. Demir., & S. Sensoy. (2005). Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions. J Biological Sci. 5 (5): 568-574.
  • Van Loon., (2007). Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243-254). Springer, Dordrecht.
  • Win, K.T., F. Tanaka, K. Okazaki., & Y. Ohwaki. (2018). The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry. 127, 599-607.
  • Yildirim, O., R. Yanmaz., & H. Orta., (1994) Effect of different irrigation methods and irrigation regimes on pepper yield. University of Ankara. Publications of Faculty of Agriculture:1369. Scientific Research Reports: 758.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Aynur Sadak 0000-0002-5865-6497

Ahmet Akköprü 0000-0002-1526-6093

Suat Şensoy 0000-0001-7129-6185

Yayımlanma Tarihi 30 Mart 2021
Kabul Tarihi 27 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 31 Sayı: 1

Kaynak Göster

APA Sadak, A., Akköprü, A., & Şensoy, S. (2021). Effects of Endophytic Bacteria on Some Physiological Traits and Nutrient Contents in Pepper Seedlings under Drought Stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(1), 237-245. https://doi.org/10.29133/yyutbd.849260

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.