Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the Stress Responses and Mineral Compositions of Some Common Wheats (Triticum aestivum L.) under Salt Treatment

Yıl 2021, Cilt: 31 Sayı: 2, 318 - 329, 30.06.2021
https://doi.org/10.29133/yyutbd.802653

Öz

The aim of this research is to evaluate and analyze the influence of different degrees of salt stress on the tolerance of Australian wheat lines having characteristics derived from wild types in comparison with a local cultivar well–adapted to Anatolian conditions under controlled conditions. In the research, the two lines, namely AU5924 and AU5907, adapted to Australian conditions harbor HKT1;4 and HKT1;5 loci and Bayraktar 2000 cultivar used as genetic material. In our study, a trial plan with four replicates and two salt treatment doses (0 mM control group and 200 mM stress group) was designed. The samples were collected for elemental analysis, measuring physiological parameters as well as determining proline content after the appearance of stress symptoms. In this respect, (K), known to play an important role in enhancing stress tolerance, was found to be higher in HKT–containing lines in comparison to Bayraktar 2000. HKT genes could improve the production of Anatolian varieties. While the dry weight of the genotype Bayraktar 2000 was higher than the lines checked, the proline content of line 5907 was lower and the potassium and (K/Na) ratio decreased. These parameters effectively increased the dry weight under salt stress. However, the line 5907 demonstrated the best tolerance among all analyzed genotypes.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TÜBİTAK)

Proje Numarası

TOVAG 214O072

Kaynakça

  • Ahmad, I., Maathuis, F.J., (2014). Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171, 708-714.
  • Ahmad, R., Hussain, S., Anjum, M.A., Khalid, M.F., Saqib, M., Zakir, I., Hassan, A., Fahad, S., Ahmad, S., (2019). Oxidative Stress and Antioxidant Defense Mechanisms in Plants Under Salt Stress, in: Hasanuzzaman, M., Hakeem, K.R., Nahar, K., Alharby, H.F. (Eds.), Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. Springer International Publishing, Cham, pp 191-205.
  • Ali, A., Cheol Park, H., Aman, R., Ali, Z., Yun, D.J., (2013). Role of HKT1 in Thellungiella salsuginea, a model extremophile plant. Plant signaling & behavior 8.
  • Ali, A., Raddatz, N., Aman, R., Kim, S., Park, H.C., Jan, M., Baek, D., Khan, I.U., Oh, D.H., Lee, S.Y., Bressan, R.A., Lee, K.W., Maggio, A., Pardo, J.M., Bohnert, H.J., Yun, D.J., (2016). A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance. Plant Physiol 171, 2112-2126.
  • Almeida, D.M., Oliveira, M.M., Saibo, N.J.M., (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40, 326-345.
  • Ami, K., Planchais, S., Cabassa, C., Guivarc’h, A., Very, A.-A., Khelifi, M., Djebbar, R., Abrous-Belbachir, O., Carol, P., (2020). Different proline responses of two Algerian durum wheat cultivars to in vitro salt stress. Acta Physiologiae Plantarum 42, 21.
  • Arzani, A., Ashraf, M., (2016). Smart Engineering of Genetic Resources for Enhanced Salinity Tolerance in Crop Plants. Crit Rev Plant Sci 35, 146-189.
  • Ashraf, M., Foolad, M.R., (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59, 206-216.
  • Bartels, D., Sunkar, R., (2005). Drought and Salt Tolerance in Plants. Crit Rev Plant Sci 24, 23-58.
  • Bhaskara, G.B., Nguyen, T.T., Verslues, P.E., (2012). Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs. Plant Physiol 160, 379-395.
  • Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lagudah, E.S., Dennis, E.S., Tester, M., Munns, R., (2007). HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143, 1918-1928.
  • Byrt, C.S., Xu, B., Krishnan, M., Lightfoot, D.J., Athman, A., Jacobs, A.K., Watson-Haigh, N.S., Plett, D., Munns, R., Tester, M., Gilliham, M., (2014). The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal 80, 516-526.
  • Cheong, M.S., Yun, D.-J., (2007). Salt-stress signaling. Journal of Plant Biology 50, 148-155.
  • Davenport, R.J., Munoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., Tester, M., (2007). The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30, 497-507.
  • Dogan, I., Kekec, G., Ozyigit, II, Sakcali, M.S., (2012a). Salinity Induced Changes in Cotton (Gossypium Hirsutum L.). Pak J Bot 44, 21-25.
  • Dogan, I., Ozyigit, I. I., Demir, G., (2012b). Mineral Element Distribution of Cotton (Gossypıum Hirsutum L.) Seedlings Under Different Salinity Levels. Pak J Bot 44, 15-20.
  • Dugasa, M.T., Cao, F., Ibrahim, W., Wu, F., (2019). Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiologia Plantarum 165, 134-143.
  • El-Hendawy, S.E., Hassan, W.M., Al-Suhaibani, N.A., Refay, Y., Abdella, K.A., (2017). Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions. Front Plant Sci 8.
  • Evans, M.D., Dizdaroglu, M., Cooke, M.S., (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567, 1-61.
  • Filiz, E., Ozyigit, I.I., Saracoglu, I.A., Uras, M.E., Sen, U., Yalcin, B., (2019). Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnology & Biotechnological Equipment 33, 128-143.
  • Genc, Y., Tester, M., McDonald, G.K., (2010). Calcium requirement of wheat in saline and non-saline conditions. Plant and Soil 327, 331-345.
  • Gu, W.-T., Zhou, L.-B., Liu, R.-Y., Jin, W.-J., Qu, Y., Dong, X.-C., Li, W.-J., (2017). Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation. Nuclear Science and Techniques 29, 10.
  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A., (2012). Role of proline under changing environments. Plant signaling & behavior 7, 1456-1466.
  • Hu, Y., Burucs, Z., von Tucher, S., Schmidhalter, U., (2007). Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60, 268-275.
  • Irakoze, W., Vanpee, B., Rufyikiri, G., Dailly, H., Nijimbere, S., Lutts, S., (2019). Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage. Journal of Plant Nutrition 42, 1001-1015.
  • Isayenkov, S.V., Maathuis, F.J.M., (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Front Plant Sci 10. Izadi, M.H., Rabbani, J., Emam, Y., Pessarakli, M., Tahmasebi, A., (2014). Effects of Salinity Stress On Physiological Performance of Various Wheat and Barley Cultivars. Journal of Plant Nutrition 37, 520-531.
  • James, R.A., Blake, C., Byrt, C.S., Munns, R., (2011). Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62, 2939-2947.
  • James, R.A., Blake, C., Zwart, A.B., Hare, R.A., Rathjen, A.J., Munns, R., (2012). Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology 39, 609-618.
  • James, R.A., Davenport, R.J., Munns, R., 2006. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142, 1537-1547.
  • Khan, A., M., Shirazi, M.U., Khan, M.A., Mujtaba, S.M., Islam, E., Mumtaz, S., Shereen, A., Ansari, R.U., Ashraf, M.Y., (2009). Role of Prolıne, K/Na Ratıo and Chlorophyll Content In Salt Tolerance of Wheat (Trıtıcum Aestıvum L.). Pak J Bot 41, 633-638.
  • Khan, A., Shafi, M., Bakht, J., Khan, M., Anwar, S., (2019). Response of wheat varieties to salinity stresses as ameliorated by seed priming. Pak J Bot 51.
  • Kim, J., Liu, Y., Zhang, X., Zhao, B., Childs, K.L., (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiol Bioch 105, 203-212.
  • Kobayashi, N.I., Yamaji, N., Yamamoto, H., Okubo, K., Ueno, H., Costa, A., Tanoi, K., Matsumura, H., Fujii-Kashino, M., Horiuchi, T., Nayef, M.A., Shabala, S., An, G., Ma, J.F., Horie, T., (2017). OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. The Plant Journal 91, 657-670.
  • Lu, X.K., Shu, N., Wang, J.J., Chen, X.G., Wang, D.L., Wang, S., Fan, W.L., Guo, X.N., Guo, L.X., Ye, W.W., (2017). Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology. Genet. Mol. Res. 16, 16.
  • Luo, Q., Teng, W., Fang, S., Li, H., Li, B., Chu, J., Li, Z., Zheng, Q., (2019). Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. The Crop Journal 7, 378-392.
  • Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J.M., Quintero, F.J., (2007). Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiol 143, 1001-1012.
  • Munns, R., James, R.A., (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201-218.
  • Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C., Byrt, C.S., Hare, R.A., Tyerman, S.D., Tester, M., Plett, D., Gilliham, M., (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature biotechnology 30, 360-364.
  • Munns, R., Tester, M., (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681.
  • Naz, T., Javaid, A., Anwar-ul-Haq, M., Saqib, M., Shahid, M., (2018). Interaction of salinity and boron in wheat affects physiological attributes, growth and activity of antioxidant enzymes. Pakistan Journal of Agricultural Sciences 55, 339-347.
  • Ozyigit, I.I., Dogan, I., Demir, G., Yalcin, I.E., (2017). Mineral Nutrient Acquisition by Cotton Cultivars Grown under Salt Stress. Communications in Soil Science and Plant Analysis 48, 846-856.
  • Per, T.S., Khan, N.A., Reddy, P.S., Masood, A., Hasanuzzaman, M., Khan, M.I.R., Anjum, N.A., (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol Bioch 115, 126-140.
  • Rahnama, A., Munns, R., Poustini, K., Watt, M., (2011). A screening method to identify genetic variation in root growth response to a salinity gradient. J Exp Bot 62, 69-77.
  • Shaaf, S., Bretani, G., Biswas, A., Fontana, I.M., Rossini, L., (2019). Genetics of barley tiller and leaf development. J Integr Plant Biol 61, 226-256.
  • Shabala, S., Cuin, T.A., (2008). Potassium transport and plant salt tolerance. Physiol Plant 133, 651-669.
  • Shaul, O., (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals 15, 307-321.
  • Shavrukov, Y., Langridge, P., Tester, M., Nevo, E., (2010). Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breeding science 60, 426-435.
  • Sheng, H., Zeng, J., Liu, Y., Wang, X., Wang, Y., Kang, H., Fan, X., Sha, L., Zhang, H., Zhou, Y., (2019). Differential Responses of Two Wheat Varieties Differing in Salt Tolerance to the Combined Stress of Mn and Salinity. Journal of Plant Growth Regulation.
  • Sienkiewicz-Cholewa, U., Sumisławska, J., Sacała, E., Dziągwa-Becker, M., Kieloch, R., (2018). Influence of silicon on spring wheat seedlings under salt stress. Acta Physiologiae Plantarum 40, 54.
  • Silva-Ortega, C.O., Ochoa-Alfaro, A.E., Reyes-Aguero, J.A., Aguado-Santacruz, G.A., Jimenez-Bremont, J.F., (2008). Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant physiology and biochemistry : PPB 46, 82-92.
  • Thu, T.T.P., Yasui, H., Yamakawa, T., (2017). Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Science and Plant Nutrition 63, 264-273.
  • Tounsi, S., Feki, K., Hmidi, D., Masmoudi, K., Brini, F., (2017). Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. Physiology and Molecular Biology of Plants 23, 517-528.
  • van Bezouw, R., Janssen, E.M., Ashrafuzzaman, M., Ghahramanzadeh, R., Kilian, B., Graner, A., Visser, R.G.F., van der Linden, C.G., (2019). Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. J Plant Physiol 241, 153029.
  • Verbruggen, N., Hermans, C., (2008). Proline accumulation in plants: a review. Amino Acids 35, 753-759.
  • Widodo, Patterson, J.H., Newbigin, E., Tester, M., Bacic, A., Roessner, U., (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60, 4089-4103.

Bazı Ekmeklik Buğdayların Tuz Uygulamasına Tepkileri ve Besin Elementi İçeriklerinin Belirlenmesi

Yıl 2021, Cilt: 31 Sayı: 2, 318 - 329, 30.06.2021
https://doi.org/10.29133/yyutbd.802653

Öz

Bu çalışmanın amacı, yabani formların genetik özelliklerinden yararlanarak elde edilen Avustralya kökenli buğday hatları ile Anadolu’ya uyum yapan yerel buğday çeşidimizin tuz stresinden ne derece etkilendiklerini karşılaştırmalı ve kontrollü koşullarda irdelemektir. Araştırmada, Avustralya koşullarına uyum yapan ve HKT1;4 ile HKT1;5 lokuslarını taşıyan AU924 ve AU5907 hatları ile Bayraktar 2000 çeşidi kullanılmıştır. Deneme; kontrol (0 mM) ve stres koşullarında (200 mM) iki doz ve 4 tekrarlamalı olarak düzenlenmiş; stres etkisindeyken prolin ve element analizi için örneklenme ile temel bazı fizyolojik büyüme parametrelerinin saptanmasına yönelik gözlemlerin yapılmıştır. Buna göre, parametreler ile kritik bazı makro ve mikro besin elementleri açısından genotiplerin tuz stresinden olumsuz etkilendikleri saptanmış, strese toleransın artışında pay sahibi olan (K) içeriğinin, toleranslı olduğu bilinen Nax taşıyıcısı yabancı buğday hatlarında yerel çeşide göre daha yüksek olduğunun anlaşılması ve bu bakımdan etkili genlerin Anadolu kökenli buğday çeşitlerine aktarılmasının tuzlu ortamlarda buğday üretimimizin arttırılmasına katkı sağlayabileceği sonucuna varılmış; kuru ağırlık açısından en iyi genotipin Bayraktar 2000 olduğu saptanmış, AU5907’deki prolin içeriğinin diğerlerinden daha düşük ve (K) ile (K/Na) oranlarındaki azalma, tuz stresinde artış göstererek, AU5907’deki tuza tolerans diğerlerine göre ön plana çıkmıştır.

Proje Numarası

TOVAG 214O072

Kaynakça

  • Ahmad, I., Maathuis, F.J., (2014). Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171, 708-714.
  • Ahmad, R., Hussain, S., Anjum, M.A., Khalid, M.F., Saqib, M., Zakir, I., Hassan, A., Fahad, S., Ahmad, S., (2019). Oxidative Stress and Antioxidant Defense Mechanisms in Plants Under Salt Stress, in: Hasanuzzaman, M., Hakeem, K.R., Nahar, K., Alharby, H.F. (Eds.), Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. Springer International Publishing, Cham, pp 191-205.
  • Ali, A., Cheol Park, H., Aman, R., Ali, Z., Yun, D.J., (2013). Role of HKT1 in Thellungiella salsuginea, a model extremophile plant. Plant signaling & behavior 8.
  • Ali, A., Raddatz, N., Aman, R., Kim, S., Park, H.C., Jan, M., Baek, D., Khan, I.U., Oh, D.H., Lee, S.Y., Bressan, R.A., Lee, K.W., Maggio, A., Pardo, J.M., Bohnert, H.J., Yun, D.J., (2016). A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance. Plant Physiol 171, 2112-2126.
  • Almeida, D.M., Oliveira, M.M., Saibo, N.J.M., (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40, 326-345.
  • Ami, K., Planchais, S., Cabassa, C., Guivarc’h, A., Very, A.-A., Khelifi, M., Djebbar, R., Abrous-Belbachir, O., Carol, P., (2020). Different proline responses of two Algerian durum wheat cultivars to in vitro salt stress. Acta Physiologiae Plantarum 42, 21.
  • Arzani, A., Ashraf, M., (2016). Smart Engineering of Genetic Resources for Enhanced Salinity Tolerance in Crop Plants. Crit Rev Plant Sci 35, 146-189.
  • Ashraf, M., Foolad, M.R., (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59, 206-216.
  • Bartels, D., Sunkar, R., (2005). Drought and Salt Tolerance in Plants. Crit Rev Plant Sci 24, 23-58.
  • Bhaskara, G.B., Nguyen, T.T., Verslues, P.E., (2012). Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs. Plant Physiol 160, 379-395.
  • Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lagudah, E.S., Dennis, E.S., Tester, M., Munns, R., (2007). HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143, 1918-1928.
  • Byrt, C.S., Xu, B., Krishnan, M., Lightfoot, D.J., Athman, A., Jacobs, A.K., Watson-Haigh, N.S., Plett, D., Munns, R., Tester, M., Gilliham, M., (2014). The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal 80, 516-526.
  • Cheong, M.S., Yun, D.-J., (2007). Salt-stress signaling. Journal of Plant Biology 50, 148-155.
  • Davenport, R.J., Munoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., Tester, M., (2007). The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30, 497-507.
  • Dogan, I., Kekec, G., Ozyigit, II, Sakcali, M.S., (2012a). Salinity Induced Changes in Cotton (Gossypium Hirsutum L.). Pak J Bot 44, 21-25.
  • Dogan, I., Ozyigit, I. I., Demir, G., (2012b). Mineral Element Distribution of Cotton (Gossypıum Hirsutum L.) Seedlings Under Different Salinity Levels. Pak J Bot 44, 15-20.
  • Dugasa, M.T., Cao, F., Ibrahim, W., Wu, F., (2019). Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiologia Plantarum 165, 134-143.
  • El-Hendawy, S.E., Hassan, W.M., Al-Suhaibani, N.A., Refay, Y., Abdella, K.A., (2017). Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions. Front Plant Sci 8.
  • Evans, M.D., Dizdaroglu, M., Cooke, M.S., (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567, 1-61.
  • Filiz, E., Ozyigit, I.I., Saracoglu, I.A., Uras, M.E., Sen, U., Yalcin, B., (2019). Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnology & Biotechnological Equipment 33, 128-143.
  • Genc, Y., Tester, M., McDonald, G.K., (2010). Calcium requirement of wheat in saline and non-saline conditions. Plant and Soil 327, 331-345.
  • Gu, W.-T., Zhou, L.-B., Liu, R.-Y., Jin, W.-J., Qu, Y., Dong, X.-C., Li, W.-J., (2017). Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation. Nuclear Science and Techniques 29, 10.
  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A., (2012). Role of proline under changing environments. Plant signaling & behavior 7, 1456-1466.
  • Hu, Y., Burucs, Z., von Tucher, S., Schmidhalter, U., (2007). Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60, 268-275.
  • Irakoze, W., Vanpee, B., Rufyikiri, G., Dailly, H., Nijimbere, S., Lutts, S., (2019). Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage. Journal of Plant Nutrition 42, 1001-1015.
  • Isayenkov, S.V., Maathuis, F.J.M., (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Front Plant Sci 10. Izadi, M.H., Rabbani, J., Emam, Y., Pessarakli, M., Tahmasebi, A., (2014). Effects of Salinity Stress On Physiological Performance of Various Wheat and Barley Cultivars. Journal of Plant Nutrition 37, 520-531.
  • James, R.A., Blake, C., Byrt, C.S., Munns, R., (2011). Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62, 2939-2947.
  • James, R.A., Blake, C., Zwart, A.B., Hare, R.A., Rathjen, A.J., Munns, R., (2012). Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology 39, 609-618.
  • James, R.A., Davenport, R.J., Munns, R., 2006. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142, 1537-1547.
  • Khan, A., M., Shirazi, M.U., Khan, M.A., Mujtaba, S.M., Islam, E., Mumtaz, S., Shereen, A., Ansari, R.U., Ashraf, M.Y., (2009). Role of Prolıne, K/Na Ratıo and Chlorophyll Content In Salt Tolerance of Wheat (Trıtıcum Aestıvum L.). Pak J Bot 41, 633-638.
  • Khan, A., Shafi, M., Bakht, J., Khan, M., Anwar, S., (2019). Response of wheat varieties to salinity stresses as ameliorated by seed priming. Pak J Bot 51.
  • Kim, J., Liu, Y., Zhang, X., Zhao, B., Childs, K.L., (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiol Bioch 105, 203-212.
  • Kobayashi, N.I., Yamaji, N., Yamamoto, H., Okubo, K., Ueno, H., Costa, A., Tanoi, K., Matsumura, H., Fujii-Kashino, M., Horiuchi, T., Nayef, M.A., Shabala, S., An, G., Ma, J.F., Horie, T., (2017). OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. The Plant Journal 91, 657-670.
  • Lu, X.K., Shu, N., Wang, J.J., Chen, X.G., Wang, D.L., Wang, S., Fan, W.L., Guo, X.N., Guo, L.X., Ye, W.W., (2017). Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology. Genet. Mol. Res. 16, 16.
  • Luo, Q., Teng, W., Fang, S., Li, H., Li, B., Chu, J., Li, Z., Zheng, Q., (2019). Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. The Crop Journal 7, 378-392.
  • Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J.M., Quintero, F.J., (2007). Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiol 143, 1001-1012.
  • Munns, R., James, R.A., (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201-218.
  • Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C., Byrt, C.S., Hare, R.A., Tyerman, S.D., Tester, M., Plett, D., Gilliham, M., (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature biotechnology 30, 360-364.
  • Munns, R., Tester, M., (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681.
  • Naz, T., Javaid, A., Anwar-ul-Haq, M., Saqib, M., Shahid, M., (2018). Interaction of salinity and boron in wheat affects physiological attributes, growth and activity of antioxidant enzymes. Pakistan Journal of Agricultural Sciences 55, 339-347.
  • Ozyigit, I.I., Dogan, I., Demir, G., Yalcin, I.E., (2017). Mineral Nutrient Acquisition by Cotton Cultivars Grown under Salt Stress. Communications in Soil Science and Plant Analysis 48, 846-856.
  • Per, T.S., Khan, N.A., Reddy, P.S., Masood, A., Hasanuzzaman, M., Khan, M.I.R., Anjum, N.A., (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol Bioch 115, 126-140.
  • Rahnama, A., Munns, R., Poustini, K., Watt, M., (2011). A screening method to identify genetic variation in root growth response to a salinity gradient. J Exp Bot 62, 69-77.
  • Shaaf, S., Bretani, G., Biswas, A., Fontana, I.M., Rossini, L., (2019). Genetics of barley tiller and leaf development. J Integr Plant Biol 61, 226-256.
  • Shabala, S., Cuin, T.A., (2008). Potassium transport and plant salt tolerance. Physiol Plant 133, 651-669.
  • Shaul, O., (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals 15, 307-321.
  • Shavrukov, Y., Langridge, P., Tester, M., Nevo, E., (2010). Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breeding science 60, 426-435.
  • Sheng, H., Zeng, J., Liu, Y., Wang, X., Wang, Y., Kang, H., Fan, X., Sha, L., Zhang, H., Zhou, Y., (2019). Differential Responses of Two Wheat Varieties Differing in Salt Tolerance to the Combined Stress of Mn and Salinity. Journal of Plant Growth Regulation.
  • Sienkiewicz-Cholewa, U., Sumisławska, J., Sacała, E., Dziągwa-Becker, M., Kieloch, R., (2018). Influence of silicon on spring wheat seedlings under salt stress. Acta Physiologiae Plantarum 40, 54.
  • Silva-Ortega, C.O., Ochoa-Alfaro, A.E., Reyes-Aguero, J.A., Aguado-Santacruz, G.A., Jimenez-Bremont, J.F., (2008). Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant physiology and biochemistry : PPB 46, 82-92.
  • Thu, T.T.P., Yasui, H., Yamakawa, T., (2017). Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Science and Plant Nutrition 63, 264-273.
  • Tounsi, S., Feki, K., Hmidi, D., Masmoudi, K., Brini, F., (2017). Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. Physiology and Molecular Biology of Plants 23, 517-528.
  • van Bezouw, R., Janssen, E.M., Ashrafuzzaman, M., Ghahramanzadeh, R., Kilian, B., Graner, A., Visser, R.G.F., van der Linden, C.G., (2019). Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. J Plant Physiol 241, 153029.
  • Verbruggen, N., Hermans, C., (2008). Proline accumulation in plants: a review. Amino Acids 35, 753-759.
  • Widodo, Patterson, J.H., Newbigin, E., Tester, M., Bacic, A., Roessner, U., (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60, 4089-4103.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi
Bölüm Makaleler
Yazarlar

Hasan Can 0000-0002-3276-0106

Mehmet Hamurcu 0000-0001-7378-4406

Sait Gezgin 0000-0002-3795-4575

Erdoğan Hakkı 0000-0001-7147-7875

Proje Numarası TOVAG 214O072
Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 23 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 31 Sayı: 2

Kaynak Göster

APA Can, H., Hamurcu, M., Gezgin, S., Hakkı, E. (2021). Determination of the Stress Responses and Mineral Compositions of Some Common Wheats (Triticum aestivum L.) under Salt Treatment. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(2), 318-329. https://doi.org/10.29133/yyutbd.802653

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.