Research Article
BibTex RIS Cite

Effects of Salinity on Yield, Yield Components and Water Productivity of Black Carrot (Daucus Carota L.) Under Water Stress Condition

Year 2022, Volume: 32 Issue: 1, 106 - 118, 31.03.2022
https://doi.org/10.29133/yyutbd.1021957

Abstract

Salinity and drought are some of the main problems affecting global crop yields. In this study, interaction effects of irrigation interval and salinity on yield, soil salinity, other parameters of black carrot were evaluated in a covered rain shelter. The treatments consist of three different irrigation intervals (4 days (I1), 6 days (I2), and 8 days (I3) with 6 different irrigation water salinity levels (0.38 (S1), 1.5 (S2), 3.0 (S3), 5.0 (S4) 7.0 (S5) and 10.0 (S6) dS m-1. The results indicated that the effect of interaction between irrigation interval and salinity was significant on yield, evapotranspiration, chlorophyll content, and soluble solid content (SSC). Yield and evapotranspiration decreased significantly with an increase in salinity and irrigation intervals. The highest yield was observed in I1S1, and the yield response (Ky) in the black carrot was 1.39. The irrigation water salinity up to 1.5 dS m-1 was nonsignificant on yield. However, the increase in soil salinity by 1 dS m-1 caused a decrease of 3.83%, 2.93%, and 3.03% in the yields of I1, I2, and I3, respectively. Moreover, increasing the salinity of irrigation water reduced the chlorophyll content and carrot juice pH value. The result of the study indicated that black carrot is sensitive to salt and water deficit, and the maximum irrigation interval using saline water should not be more than 6 days. Therefore, it can be concluded that in regions where salinity is high, more frequent irrigation minimizes losses that may occur in yield.

References

  • Abd El-Halim, A. E. H. A., & U. A. E. H. Abd El-Razek. (2014). Effect of different irrigation intervals on water saving, water productivity, and grain yield of maize (Zea mays L.) under the double ridge-furrow planting technique. Archives of Agronomy and Soil Science, 60(5): 587-596.
  • Abedinpour, M., & Rohani. E. (2016). Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. Journal of Water Reuse and Desalination, 7(3): 319-325.
  • Ahmed N. U., N. U. Mahmud, M. A. Zaman, Z. Ferdous., & S. C. Halder. (2017). Effect of Different Salinity Level on Tomato (Lycopersicon esculentum) Production under Climate Change Condition in Bangladesh. Annu. Res. Rev. Biol, 13(3): 1-9.
  • Ayers R. S., & D. W. Westcot. (1989). Water Quality for Agriculture. Irrigation and Drainage Paper, No. 29, FAO, Rome.174 p.
  • Azder, G., Gocmen, E., & Istanbulluoglu, A. (2020). Effects of Different Irrigation Levels on Yield and Yield Components of Kapya Pepper (Capsicum Annum Cv. Kapija) Under Tekirdag Conditions. Journal of Tekirdag Agriculture Faculty, 17(3), 422-431.
  • Bell, J. M., R. Schwartz, K. J. McInnes, T. Howell., & C.L. Morgan. (2018). Deficit irrigation effects on yield and yield components of grain sorghum. Agricultural Water Management, 203: 289-296.
  • Carvalho, D., N. Oliveira, H. Dionizio, L. F. Felix, J. G. U. Guerra., & C.A.Salvador. (2016). Yield, water use efficiency, and yield response factor in carrot crop under different irrigation depths. Ciência Rural, 46(7): 1145-1150.
  • Chen, L., C.Li, Q. Feng, Y.Wei, H. Zheng, Y. Zhao., & H. Li. (2017). Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. Science of the Total Environment, 598: 64-70.
  • Doorenbos, J., & A.H. Kassam. (1986). Yield response to water. FAO. Irrigation and Drainage Paper No:13.Rome. 193p.
  • El-Mogy, Mohamed. M., C. Garchery., & R. Stevens. (2018). Irrigation with saltwater affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68(8): 727-737.
  • Gonzalez-Dugo, V., C. Ruz, L. Testie, F. Orgaz., & E. Fereres. (2018). The impact of deficit irrigation on transpiration and yield of mandarin and late oranges. Irrigation science, 36 (4-5): 227-239. https://doi.org/10.1007/s00271-018-0579-7.
  • Hancıoğlu, N.E., A. Kurunç, I., & A.Topuz. (2019). Irrigation water salinity effects on oregano (Origanum onites L.) water use, yield and quality parameters. Scientia Horticulturae, 247: 327-334.
  • Hazrati, S., Z. Tahmasebi-Sarvestani, A. Mokhtassi-Bidgoli, H. Mohammadi., & S. Nicola. (2017). Effects of zeolite and water stress on growth, yield and chemical compositions of aloe vera, l. Agric. Water Manage. 181: 66–72.
  • Howell, T. A., R. H. Cuenca., & K. H. Solomon. (1990). Crop yield response. In Chapter 5 in management of farm Irrigation Systems, ed. by G. J. Hoffman, T. A. Howell, and K. H. Solomon, 93–122. St. Joseph, MI: American Society of Agricultural Engineers Monograph, ASAE. 1040 pp.
  • Jiang, J., Z.L. Huo, S.F. Feng., & C.B. Zhang. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crop Res. 137: 78–88. Katerji N., J. W. Hoorn, A. Hamdyc., & M. Mastrorıllid. (1998). The response of Tomatoes, A Crop of Indeterminate Growth, to Soil Salinity. Agricultural Water Management 38: 59- 68.
  • Kıran, S., Ş. Kuşvuran, A. T. E. Ş, Çağla., & Ş.Ş. Ellialtıoğlu. (2018). The changes of fruit quality parameters at using of different eggplant rootstock/scion combinations which growing under salt and drought stress. DERİM, 35(2): 111-120.
  • Kim, H., H. Jeong, J. Jeon., & S. Bae. (2016). Effects of Irrigation with Saline Water on Crop Growth and Yield in Greenhouse Cultivation. Water, 8: 127.
  • Kiremit M. S., & H. Arslan H (2016). Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters, Scientia Horticulturae, 201: 211-217.
  • Kiremit M. S., & H. Arslan. (2018). Response of Leek (Allium porrum L.) to different ırrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49: 1-10. DOI. 10.1080/00103624.2017.1421652.
  • Korkmaz, A., A. Karagöl., & A. Horuz. (2016). The effects of humic acid added into the nutrient solution on yield and some fruit quality properties of tomato plant under the increasing NaCl stress conditions. Anadolu J Agr Sci, 31(2): 275-282.
  • Mosaffa, H. R., & A. R. Sepaskhah. (2019). Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agricultural Water Management, 216: 444-456.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell and environment, 25(2): 239-250.
  • Ors, S., and D.L. Suarez. (2016). Salt tolerance of spinach as related to seasonal climate. Hortic. Sci 43, 33–41.
  • Ors, S., & Suarez, D. L. (2017). Spinach biomass yield and physiological response to interactive salinity and water stress. Agricultural water management, 190, 31-41.
  • Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., & Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137, 335-339.
  • Ozturk, I., & Korkut, K. Z. (2018). The Effect of Drought in Different Development Periods on Yield and Yield Components in Bread Wheat (Triticum aestivum L) Genotypes. Journal of Tekirdag Agriculture Faculty, 15(2), 128-137.
  • Reis M., L. Coelho L, G. Santos, U. Kienle., & J. Beltrão. (2015). Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agricultural Water Management, 152: 217-221.
  • Rostami Ajirloo, A., & E. Amiri. (2018). Responses of Tomato Cultivars to Water-Deficit Conditions (Case Study: Moghan Plain, Iran). Communications in Soil Science and Plant Analysis, 49(18), 2267-2283.
  • Ruiz, M.S., H. Yasuor, A. Ben-Gal, U. Yermiyahu, Y. Saranga., & R. Elbaum.R. (2015). Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill) fruit. Sci Hortic. 192:244–249. doi:10.1016/j.scienta.06.002.
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S &., Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional, and biochemical properties of cabbage (Brassica oleraceavar. capitata). Sci. Hortic. 240(20), 196–204.
  • Sepaskhah, A. R., & N. Yarami. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. The Journal of Horticultural Science and Biotechnology, 84(2): 216-222.
  • Shah, S.H., R. Houborg., & M.F. McCabe. (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7:61.
  • Ünlükara, A., A. Kurunç, D.G. Kesmez., & E. Yurtseven. (2008). Growth and evapotranspiration of okra (Abelmoschus esculentus l.) as influenced by salinity of irrigation water. Journal of Irrigation and Drainage Engineering. ASCE.0733-9437/134:28160).3.
  • Ünlükara, A., B. Cemek, D.G. Kesmez., & A.,Öztürk. (2011). Carrot (Daucus carota L.) yield and quality under salinity conditions. Anadolu J Agr Sci., 26(1): 51–56.
  • Yavuz, D., N. Yavuz, M. Seymen., & Ö. Türkmen. (2015). Evapotranspiration, crop coefficient and seed yield of drip irrigated pumpkin under semi-arid conditions. Scientia Horticulturae, 197: 33-40.
  • Yuan, C., S. Feng, Z. Huo., & Q. Ji. (2019). Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agricultural Water Management, 212: 424-432.
  • Yurtseven, E., H.S. Öztürk, S. Avcı, S. Altınok., & M.F. Selenay. (2012). Soil Salinity Changes Due to Different Irrigation Water Salinity and Leaching Fractions. Soil, Water Journal, 1 (1):38-46.

Su Stres Koşulları Altında Tuzluluğun Siyah Havuç Bitkisinin (Daucus Carota L.) Verim, Verim Bileşenleri ve Bitki Su Tüketimi Üzerine Etkileri

Year 2022, Volume: 32 Issue: 1, 106 - 118, 31.03.2022
https://doi.org/10.29133/yyutbd.1021957

Abstract

Tuzluluk ve kuraklık, küresel anlamda bitkisel üretimi etkileyen en önemli önemli problemlerden bazılarıdır. Bu çalışma, sulama aralığı ve sulama suyu tuzluluğun siyah havucun verim ve büyüme parametreleri ile toprak tuzluluğu üzerine olan etkilerini belirlemek amacıyla yağış örtüsü ile kapalı bir alanda yapılmıştır. Çalışma, 6 farklı sulama suyu tuzluluk seviyesi (0.38 (S1), 1.5 (S2), 3.0 (S3), 5.0 (S4) 7.0 (S5) ve 10.0 (S6) dS/m ve 3 farklı sulama aralığında (4 gün (I1), 6 gün (I2) ve 8 gün (I3) yürütülmüştür. Çalışma sonucunda sulama aralığı ve sulama suyu tuzluluğunun interaksiyon etkisinin verim, bitki su tüketimi, klorofil içeriği ve suda çözünebilir katı madde miktarı (SÇKM) üzerine önemli deredece etki ettiği belirlenmiştir. Tuzluluk ve sulama aralıklarının artmasıyla birlikte siyah havucun verimi ve bitki su tükerim değerleri önemli derecede azalış göstermiştir. En yüksek verim I1 x S1 konusundan elde edilmiş ve verim tepki faktörü (Ky) 1.39 olarak belirlenmiştir. Sulama suyu tuzluluğunun 1.5 dS/m’ ye kadar olması siyah havucun veriminde herhangi bir azalmaya neden olmadığı belirlenmiş bununla birlikte toprak tuzluluğundaki 1 dS/m lik artış, I1, I2 ve I3 sulama aralıklarında sırasıyla % 3.83, % 2.93 ve % 3.03 oranında azalmaya neden olmuştur. Sulama suyu tuzluluğundaki artış klorofil içeriğini ve havuç suyunun pH değerini düşürmüştür. Araştırma sonucunda, siyah havucun tuz ve su kısıtına. Karşı hassas olduğu ve tuzlu su kullanılması durumunda siyah havuç için sulama aralığının en fazla 6 gün olması gerektiği tespit edilmiştir. Sulama suyu tuzluluğunun yüksek olduğu bölgelerde daha sık sulama yapılması ile verimde oluşabilecek kayıpların en aza indirileceği belirlenmiştir.

References

  • Abd El-Halim, A. E. H. A., & U. A. E. H. Abd El-Razek. (2014). Effect of different irrigation intervals on water saving, water productivity, and grain yield of maize (Zea mays L.) under the double ridge-furrow planting technique. Archives of Agronomy and Soil Science, 60(5): 587-596.
  • Abedinpour, M., & Rohani. E. (2016). Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. Journal of Water Reuse and Desalination, 7(3): 319-325.
  • Ahmed N. U., N. U. Mahmud, M. A. Zaman, Z. Ferdous., & S. C. Halder. (2017). Effect of Different Salinity Level on Tomato (Lycopersicon esculentum) Production under Climate Change Condition in Bangladesh. Annu. Res. Rev. Biol, 13(3): 1-9.
  • Ayers R. S., & D. W. Westcot. (1989). Water Quality for Agriculture. Irrigation and Drainage Paper, No. 29, FAO, Rome.174 p.
  • Azder, G., Gocmen, E., & Istanbulluoglu, A. (2020). Effects of Different Irrigation Levels on Yield and Yield Components of Kapya Pepper (Capsicum Annum Cv. Kapija) Under Tekirdag Conditions. Journal of Tekirdag Agriculture Faculty, 17(3), 422-431.
  • Bell, J. M., R. Schwartz, K. J. McInnes, T. Howell., & C.L. Morgan. (2018). Deficit irrigation effects on yield and yield components of grain sorghum. Agricultural Water Management, 203: 289-296.
  • Carvalho, D., N. Oliveira, H. Dionizio, L. F. Felix, J. G. U. Guerra., & C.A.Salvador. (2016). Yield, water use efficiency, and yield response factor in carrot crop under different irrigation depths. Ciência Rural, 46(7): 1145-1150.
  • Chen, L., C.Li, Q. Feng, Y.Wei, H. Zheng, Y. Zhao., & H. Li. (2017). Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. Science of the Total Environment, 598: 64-70.
  • Doorenbos, J., & A.H. Kassam. (1986). Yield response to water. FAO. Irrigation and Drainage Paper No:13.Rome. 193p.
  • El-Mogy, Mohamed. M., C. Garchery., & R. Stevens. (2018). Irrigation with saltwater affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68(8): 727-737.
  • Gonzalez-Dugo, V., C. Ruz, L. Testie, F. Orgaz., & E. Fereres. (2018). The impact of deficit irrigation on transpiration and yield of mandarin and late oranges. Irrigation science, 36 (4-5): 227-239. https://doi.org/10.1007/s00271-018-0579-7.
  • Hancıoğlu, N.E., A. Kurunç, I., & A.Topuz. (2019). Irrigation water salinity effects on oregano (Origanum onites L.) water use, yield and quality parameters. Scientia Horticulturae, 247: 327-334.
  • Hazrati, S., Z. Tahmasebi-Sarvestani, A. Mokhtassi-Bidgoli, H. Mohammadi., & S. Nicola. (2017). Effects of zeolite and water stress on growth, yield and chemical compositions of aloe vera, l. Agric. Water Manage. 181: 66–72.
  • Howell, T. A., R. H. Cuenca., & K. H. Solomon. (1990). Crop yield response. In Chapter 5 in management of farm Irrigation Systems, ed. by G. J. Hoffman, T. A. Howell, and K. H. Solomon, 93–122. St. Joseph, MI: American Society of Agricultural Engineers Monograph, ASAE. 1040 pp.
  • Jiang, J., Z.L. Huo, S.F. Feng., & C.B. Zhang. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crop Res. 137: 78–88. Katerji N., J. W. Hoorn, A. Hamdyc., & M. Mastrorıllid. (1998). The response of Tomatoes, A Crop of Indeterminate Growth, to Soil Salinity. Agricultural Water Management 38: 59- 68.
  • Kıran, S., Ş. Kuşvuran, A. T. E. Ş, Çağla., & Ş.Ş. Ellialtıoğlu. (2018). The changes of fruit quality parameters at using of different eggplant rootstock/scion combinations which growing under salt and drought stress. DERİM, 35(2): 111-120.
  • Kim, H., H. Jeong, J. Jeon., & S. Bae. (2016). Effects of Irrigation with Saline Water on Crop Growth and Yield in Greenhouse Cultivation. Water, 8: 127.
  • Kiremit M. S., & H. Arslan H (2016). Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters, Scientia Horticulturae, 201: 211-217.
  • Kiremit M. S., & H. Arslan. (2018). Response of Leek (Allium porrum L.) to different ırrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49: 1-10. DOI. 10.1080/00103624.2017.1421652.
  • Korkmaz, A., A. Karagöl., & A. Horuz. (2016). The effects of humic acid added into the nutrient solution on yield and some fruit quality properties of tomato plant under the increasing NaCl stress conditions. Anadolu J Agr Sci, 31(2): 275-282.
  • Mosaffa, H. R., & A. R. Sepaskhah. (2019). Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agricultural Water Management, 216: 444-456.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell and environment, 25(2): 239-250.
  • Ors, S., and D.L. Suarez. (2016). Salt tolerance of spinach as related to seasonal climate. Hortic. Sci 43, 33–41.
  • Ors, S., & Suarez, D. L. (2017). Spinach biomass yield and physiological response to interactive salinity and water stress. Agricultural water management, 190, 31-41.
  • Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., & Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137, 335-339.
  • Ozturk, I., & Korkut, K. Z. (2018). The Effect of Drought in Different Development Periods on Yield and Yield Components in Bread Wheat (Triticum aestivum L) Genotypes. Journal of Tekirdag Agriculture Faculty, 15(2), 128-137.
  • Reis M., L. Coelho L, G. Santos, U. Kienle., & J. Beltrão. (2015). Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agricultural Water Management, 152: 217-221.
  • Rostami Ajirloo, A., & E. Amiri. (2018). Responses of Tomato Cultivars to Water-Deficit Conditions (Case Study: Moghan Plain, Iran). Communications in Soil Science and Plant Analysis, 49(18), 2267-2283.
  • Ruiz, M.S., H. Yasuor, A. Ben-Gal, U. Yermiyahu, Y. Saranga., & R. Elbaum.R. (2015). Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill) fruit. Sci Hortic. 192:244–249. doi:10.1016/j.scienta.06.002.
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S &., Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional, and biochemical properties of cabbage (Brassica oleraceavar. capitata). Sci. Hortic. 240(20), 196–204.
  • Sepaskhah, A. R., & N. Yarami. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. The Journal of Horticultural Science and Biotechnology, 84(2): 216-222.
  • Shah, S.H., R. Houborg., & M.F. McCabe. (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7:61.
  • Ünlükara, A., A. Kurunç, D.G. Kesmez., & E. Yurtseven. (2008). Growth and evapotranspiration of okra (Abelmoschus esculentus l.) as influenced by salinity of irrigation water. Journal of Irrigation and Drainage Engineering. ASCE.0733-9437/134:28160).3.
  • Ünlükara, A., B. Cemek, D.G. Kesmez., & A.,Öztürk. (2011). Carrot (Daucus carota L.) yield and quality under salinity conditions. Anadolu J Agr Sci., 26(1): 51–56.
  • Yavuz, D., N. Yavuz, M. Seymen., & Ö. Türkmen. (2015). Evapotranspiration, crop coefficient and seed yield of drip irrigated pumpkin under semi-arid conditions. Scientia Horticulturae, 197: 33-40.
  • Yuan, C., S. Feng, Z. Huo., & Q. Ji. (2019). Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agricultural Water Management, 212: 424-432.
  • Yurtseven, E., H.S. Öztürk, S. Avcı, S. Altınok., & M.F. Selenay. (2012). Soil Salinity Changes Due to Different Irrigation Water Salinity and Leaching Fractions. Soil, Water Journal, 1 (1):38-46.
There are 37 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Mehmet Altun 0000-0001-7807-9810

Hakan Arslan 0000-0002-9677-6035

Publication Date March 31, 2022
Acceptance Date February 24, 2022
Published in Issue Year 2022 Volume: 32 Issue: 1

Cite

APA Altun, M., & Arslan, H. (2022). Effects of Salinity on Yield, Yield Components and Water Productivity of Black Carrot (Daucus Carota L.) Under Water Stress Condition. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(1), 106-118. https://doi.org/10.29133/yyutbd.1021957
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.