Yıl 2022,
Cilt: 32 Sayı: 3, 609 - 622, 30.09.2022
Nuri Orhan
,
Seda Şahin
,
Mehmet Bahadır
Kaynakça
- Almeida, E., Spogis, N., & Silva, M. (2016). Computational study of the pneumatic separation of sugarcane bagasse. Paper presented at the Proceedings of the 6th International Conference on Engineering for Waste and Biomass Valorisation, Albi, France.
- Annoussamy, M., Richard, G., Recous, S., & Guerif, J. (2000). Change in mechanical properties of wheat straw due to decomposition and moisture. Applied Eng. in Agri., 16(6), 657. doi:https://doi.org/https://doi.org/10.13031/2013.5366
- Avcı, A., & Erel, G. (2003). Effect of Length on Production in Cyclone Separators and Optimization. Uludağ University Journal of The Faculty of Engineering, 8(1), 101-109.
- Chu, K., Wang, B., Xu, D., Chen, Y., & Yu, A. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Eng. Sci., 66(5), 834-847. doi:https://doi.org/10.1016/j.ces.2010.11.026
- Corrêa, J., Graminho, D., Silva, M., & Nebra, S. (2004). The cyclonic dryer: a numerical and experimental analysis of the influence of geometry on average particle residence time. Brazilian Jour. of Che. Engi., 21(1), 103-112.
- Corrêa, J. L., Graminho, D. R., Silva, M. A., & Nebra, S. A. (2004). Cyclone as a sugar cane bagasse dryer. Brazilian Jour. of Che. Engi., 12(6), 826-830.
- Cortes, C., & Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Prog. in Energ. and Com. Sci., 33(5), 409-452. doi:https://doi.org/10.1016/j.pecs.2007.02.001
- Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65.
- Dibb, A., & Silva, M. (1997). Cyclone as a dryer–the optimum geometry. Paper presented at the Proceedings of the First Inter-American Drying Conference (IADC).
- Drew, D. A. (1983). Mathematical modeling of two-phase flow. Annual review of fluid mechanics, 15(1), 261-291.
- El-Emam, M. A., Zhou, L., Shi, W., & Han, C. (2021). Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter. Pow. Tech., 385, 357-374. doi:https://doi.org/10.1016/j.powtec.2021.03.006
- Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied scientific research, 52(4), 309-329.
- Elsayed, K., & Lacor, C. (2011). The effect of cyclone inlet dimensions on the flow pattern and performance. Appli. Mat. Model., 35(4), 1952-1968. doi:https://doi.org/10.1016/j.apm.2010.11.007
- Elsayed, K., & Lacor, C. (2014). Analysis and optimisation of cyclone separators geometry using RANS and LES methodologies. In Turbul. and Interac. (pp. 65-74): Springer.
- Farias Neto, S. R., Farias, F. P. M., Delgado, J. M. P. Q., Lima, A. G., & Cunha, A. L. (2013). Cyclone: Their characteristics and drying technological applications. In Industrial and Technological Applications of Transport in Porous Materials (pp. 1-36): Springer.
- Farran, I., & Macmillan, R. (1979). Grain-chaff separation in a vertical air stream. Journal of Agr. Engi. Res., 24(2), 115-129.
- Faulkner, W. B., & Shaw, B. W. (2006). Efficiency And Pressure Drop Of Cyclones Across A Range Of Inlet Velocities. Appli. Eng. in Agr., 22(1), 155-161. doi:https://doi.org/10.13031/2013.20191
- Fıçıcı, F. (2006). An Experimental Investigation on The Effect of Plungİng Pipe Diameter Change in Cyclones to The Flow Parameters (Master). Sakarya University, Sakarya.
- Fluent, A. (2009). Ansys Fluent 12.0 Theory Guide. ANSYS Inc., Canonsburg, PA.
- Fonte, C. B., Oliveira Jr, J. A., & de ALMEIDA, L. C. (2015). DEM-CFD coupling: mathematical modelling and case studies using ROCKY-DEM® and ANSYS Fluent®. Paper presented at the Proceedings of the 11th International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
- Freireich, B., Litster, J., & Wassgren, C. (2009). Using the discrete element method to predict collision-scale behavior: a sensitivity analysis. Chemi. Eng. Sci., 64(15), 3407-3416. doi:https://doi.org/10.1016/j.ces.2009.04.019
- Ganser, G. H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. Pow. Techn., 77(2), 143-152. doi:https://doi.org/10.1016/0032-5910(93)80051-B
- Gimbun, J., Chuah, T., Fakhru’l-Razi, A., & Choong, T. S. (2005). The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chemi. Eng. and Proces. :Pro. Intensifi., 44(1), 7-12. doi:https://doi.org/10.1016/j.cep.2004.03.005
- Gronald, G., & Derksen, J. (2011). Simulating turbulent swirling flow in a gas cyclone: A comparison of various modeling approaches. Pow. Tech., 205(1-3), 160-171.
- He, Y., Bayly, A. E., & Hassanpour, A. (2018). Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows. Pow. Tech., 325, 620-631. doi:https://doi.org/10.1016/j.powtec.2017.11.045
- Huang, A.-N., Ito, K., Fukasawa, T., Fukui, K., & Kuo, H.-P. (2018). Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator. Jour. of the Taiw. Inst. of Chem. Eng., 90, 61-67. doi:https://doi.org/10.1016/j.jtice.2017.12.016
- Jakirlic, S., Hanjalic, K., & Tropea, C. (2002). Modeling rotating and swirling turbulent flows: a perpetual challenge. AIAA journal, 40(10), 1984-1996. doi:https://doi.org/10.2514/2.1560
- Karpov, S., & Saburov, E. (1998). Optimization of geometric parameters for cyclone separators. Theor. Foun. of Chem. Eng., 32(1), 7-12.
Khoshtaghaza, M., & Mehdizadeh, R. (2006). Aerodynamic properties of wheat kernel and straw materials. Agr. Eng. Intern.: CIGR Jour.
- Kozołub, P., Klimanek, A., Białecki, R. A., & Adamczyk, W. P. (2017). Numerical simulation of a dense solid particle flow inside a cyclone separator using the hybrid Euler–Lagrange approach. Particuol., 31, 170-180. doi:https://doi.org/10.1016/j.partic.2016.09.003
- Li, H., Li, Y., Gao, F., Zhao, Z., & Xu, L. (2012). CFD–DEM simulation of material motion in air-and-screen cleaning device. Comp. and Electr. in Agr., 88, 111-119. doi:https://doi.org/10.1016/j.compag.2012.07.006
- Li, S., Yang, H., Zhang, H., Yang, S., Lu, J., & Yue, G. (2009). Measurements of solid concentration and particle velocity distributions near the wall of a cyclone. Chem. Eng. Jour., 150(1), 168-173. doi:https://doi.org/10.1016/j.cej.2008.12.019
- Lim, K., Kwon, S., & Lee, K. (2003). Characteristics of the collection efficiency for a double inlet cyclone with clean air. Jour. of Aerosol Sci., 34(8), 1085-1095. doi:https://doi.org/10.1016/S0021-8502(03)00079-X
- Liu, F., Zhang, J., & Chen, J. (2018). Modeling of flexible wheat straw by discrete element method and its parameter calibration. Inter. Jour. of Agri.. and Biologi. Eng., 11(3), 42-46. doi:DOI: 10.25165/j.ijabe.20181103.3381
- Ma, L., Fu, P., Wu, J., Wang, F., Li, J., Shen, Q., & Wang, H. (2015). CFD simulation study on particle arrangements at the entrance to a swirling flow field for improving the separation efficiency of cyclones. Aerosol and Air Qual. Res., 15(6), 2456-2465.
doi:https://doi.org/10.4209/aaqr.2015.02.0126
- Marinuc, M., & Rus, F. (2011). The effect of particle size and input velocity on cyclone separation process. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering. Series II, 4(2), 117.
- Neuwirth, J., Antonyuk, S., Heinrich, S., & Jacob, M. (2013). CFD–DEM study and direct measurement of the granular flow in a rotor granulator. Chemi. Eng. Sci., 86, 151-163. doi:https://doi.org/10.1016/j.ces.2012.07.005
- O'dogherty, M., Huber, J., Dyson, J., & Marshall, C. (1995). A study of the physical and mechanical properties of wheat straw. Jour. of Agri. Eng. Res., 62(2), 133-142. doi:https://doi.org/10.1006/jaer.1995.1072
- Peng, G., Huang, X., Zhou, L., Zhou, G., & Zhou, H. (2020). Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Engin. Fail. Analy., 114, 104602. doi:https://doi.org/10.1016/j.engfailanal.2020.104602
- Peng, W., Hoffmann, A., Boot, P., Udding, A., Dries, H., Ekker, A., & Kater, J. (2002). Flow pattern in reverse-flow centrifugal separators. Pow. Tech., 127(3), 212-222. doi:https://doi.org/10.1016/S0032-5910(02)00148-1
- Rocky, E. (2018). Rocky DEM technical manual.
- Sitkei, G. (1987). Mechanics of agricultural materials: Elsevier.
- Slack, M., Prasad, R., Bakker, A., & Boysan, F. (2000). Advances in cyclone modelling using unstructured grids. Chem. Engi. Res. and Des., 8(78), 1098-1104. doi:https://doi.org/10.1205/026387600528373
- Stepanenko, S. (2017). Research pneumatic gravity separation grain materials. Paper presented at the Scientific Proceedings V International Scientific-Technical Conference "Agricultural Machinery" 2017.
- Şendoğan, Ö. (2012). Desing of High Efficient Cyclone and Experimental Investigation Its Performance (MSc Thesis). Uludağ University,
- Vose, J. (1978). Separating grain components by air classification. Separation and Purification Methods, 7(1), 1-29.
- Walton, O. R., & Braun, R. L. (1986). Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of rheology, 30(5), 949-980.
- Wan, G., Sun, G., Xue, X., & Shi, M. (2008). Solids concentration simulation of different size particles in a cyclone separator. Pow. Tech., 183(1), 94-104. doi:https://doi.org/10.1016/j.powtec.2007.11.019
- Wang, B., Xu, D., Chu, K., & Yu, A. (2006). Numerical study of gas–solid flow in a cyclone separator. Appli. Math. Model., 30(11), 1326-1342. doi:https://doi.org/10.1016/j.apm.2006.03.011
- Wang, L., Parnell, C. B., & Shaw, B. W. (2002). A study of the cyclone fractional efficiency curves. Intern.. Comm. of Agri. Engi., 4. doi:https://hdl.handle.net/1813/10270
- Xiang, R., & Lee, K. (2005). Numerical study of flow field in cyclones of different height. Chem. Engin. and Proces.: Proc. Inten., 44(8), 877-883. doi:https://doi.org/10.1016/j.cep.2004.09.006
- Zhou, L., Han, C., Bai, L., Li, W., El-Emam, M. A., & Shi, W. (2020). CFD-DEM bidirectional coupling simulation and experimental investigation of particle ejections and energy conversion in a spouted bed. Energ., 211, 118672.
doi:https://doi.org/10.1016/j.energy.2020.118672
- Zhu, H., Zhou, Z., Yang, R., & Yu, A. (2008). Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Engin. Sci., 63(23), 5728-5770. doi:https://doi.org/10.1016/j.ces.2008.08.006
Determination of Separation Performance in CFD-DEM Simulation Using Straw Particles in A Standard Cyclone
Yıl 2022,
Cilt: 32 Sayı: 3, 609 - 622, 30.09.2022
Nuri Orhan
,
Seda Şahin
,
Mehmet Bahadır
Öz
Although flow in biological materials sometimes behaves like a continuous one, it cannot be simulated with continuity-based modeling when it comes to discontinuous flow behavior. The Discrete Element Method (DEM) in combination with Computational Fluid Dynamics (CFD) is a computational method for modeling particles in fluid flow by tracking their motion. DEM is widely used in the field of engineering, and its use in the agricultural field is increasing. This study analyzes the CFD-DEM relationship of biological material in aerodynamic systems and reviews current applications. In the article, the definition of aerodynamic systems as a basic principle, particle-fluid and particle-particle interaction forces in the system, modeling of particle motions, CFD-DEM coupling method, and analysis applications of agricultural aerodynamic systems are examined. In this study, simulation experiments were carried out at 100 g/s and 200 g/s straw feeding values at each value of 18-15-12-10-8-6-4 m/s air and straw inlet velocities. The flow near the cyclone walls caused the straw particles to be directed towards the lower exit end of the cyclone. At feed densities of 100 g/s and 200 g/s, the least particle output was obtained at a rate of 18 m/s. The highest cyclone output efficiency was obtained at feed densities of 100 g/s and 200 g/s at a velocity of 12 m/s. The compatibility of the trial simulation results with the literature showed that the CFD-DEM application is an important approach to study the behavior of particulate matter in fluids.
Kaynakça
- Almeida, E., Spogis, N., & Silva, M. (2016). Computational study of the pneumatic separation of sugarcane bagasse. Paper presented at the Proceedings of the 6th International Conference on Engineering for Waste and Biomass Valorisation, Albi, France.
- Annoussamy, M., Richard, G., Recous, S., & Guerif, J. (2000). Change in mechanical properties of wheat straw due to decomposition and moisture. Applied Eng. in Agri., 16(6), 657. doi:https://doi.org/https://doi.org/10.13031/2013.5366
- Avcı, A., & Erel, G. (2003). Effect of Length on Production in Cyclone Separators and Optimization. Uludağ University Journal of The Faculty of Engineering, 8(1), 101-109.
- Chu, K., Wang, B., Xu, D., Chen, Y., & Yu, A. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Eng. Sci., 66(5), 834-847. doi:https://doi.org/10.1016/j.ces.2010.11.026
- Corrêa, J., Graminho, D., Silva, M., & Nebra, S. (2004). The cyclonic dryer: a numerical and experimental analysis of the influence of geometry on average particle residence time. Brazilian Jour. of Che. Engi., 21(1), 103-112.
- Corrêa, J. L., Graminho, D. R., Silva, M. A., & Nebra, S. A. (2004). Cyclone as a sugar cane bagasse dryer. Brazilian Jour. of Che. Engi., 12(6), 826-830.
- Cortes, C., & Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Prog. in Energ. and Com. Sci., 33(5), 409-452. doi:https://doi.org/10.1016/j.pecs.2007.02.001
- Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65.
- Dibb, A., & Silva, M. (1997). Cyclone as a dryer–the optimum geometry. Paper presented at the Proceedings of the First Inter-American Drying Conference (IADC).
- Drew, D. A. (1983). Mathematical modeling of two-phase flow. Annual review of fluid mechanics, 15(1), 261-291.
- El-Emam, M. A., Zhou, L., Shi, W., & Han, C. (2021). Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter. Pow. Tech., 385, 357-374. doi:https://doi.org/10.1016/j.powtec.2021.03.006
- Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied scientific research, 52(4), 309-329.
- Elsayed, K., & Lacor, C. (2011). The effect of cyclone inlet dimensions on the flow pattern and performance. Appli. Mat. Model., 35(4), 1952-1968. doi:https://doi.org/10.1016/j.apm.2010.11.007
- Elsayed, K., & Lacor, C. (2014). Analysis and optimisation of cyclone separators geometry using RANS and LES methodologies. In Turbul. and Interac. (pp. 65-74): Springer.
- Farias Neto, S. R., Farias, F. P. M., Delgado, J. M. P. Q., Lima, A. G., & Cunha, A. L. (2013). Cyclone: Their characteristics and drying technological applications. In Industrial and Technological Applications of Transport in Porous Materials (pp. 1-36): Springer.
- Farran, I., & Macmillan, R. (1979). Grain-chaff separation in a vertical air stream. Journal of Agr. Engi. Res., 24(2), 115-129.
- Faulkner, W. B., & Shaw, B. W. (2006). Efficiency And Pressure Drop Of Cyclones Across A Range Of Inlet Velocities. Appli. Eng. in Agr., 22(1), 155-161. doi:https://doi.org/10.13031/2013.20191
- Fıçıcı, F. (2006). An Experimental Investigation on The Effect of Plungİng Pipe Diameter Change in Cyclones to The Flow Parameters (Master). Sakarya University, Sakarya.
- Fluent, A. (2009). Ansys Fluent 12.0 Theory Guide. ANSYS Inc., Canonsburg, PA.
- Fonte, C. B., Oliveira Jr, J. A., & de ALMEIDA, L. C. (2015). DEM-CFD coupling: mathematical modelling and case studies using ROCKY-DEM® and ANSYS Fluent®. Paper presented at the Proceedings of the 11th International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
- Freireich, B., Litster, J., & Wassgren, C. (2009). Using the discrete element method to predict collision-scale behavior: a sensitivity analysis. Chemi. Eng. Sci., 64(15), 3407-3416. doi:https://doi.org/10.1016/j.ces.2009.04.019
- Ganser, G. H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. Pow. Techn., 77(2), 143-152. doi:https://doi.org/10.1016/0032-5910(93)80051-B
- Gimbun, J., Chuah, T., Fakhru’l-Razi, A., & Choong, T. S. (2005). The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chemi. Eng. and Proces. :Pro. Intensifi., 44(1), 7-12. doi:https://doi.org/10.1016/j.cep.2004.03.005
- Gronald, G., & Derksen, J. (2011). Simulating turbulent swirling flow in a gas cyclone: A comparison of various modeling approaches. Pow. Tech., 205(1-3), 160-171.
- He, Y., Bayly, A. E., & Hassanpour, A. (2018). Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows. Pow. Tech., 325, 620-631. doi:https://doi.org/10.1016/j.powtec.2017.11.045
- Huang, A.-N., Ito, K., Fukasawa, T., Fukui, K., & Kuo, H.-P. (2018). Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator. Jour. of the Taiw. Inst. of Chem. Eng., 90, 61-67. doi:https://doi.org/10.1016/j.jtice.2017.12.016
- Jakirlic, S., Hanjalic, K., & Tropea, C. (2002). Modeling rotating and swirling turbulent flows: a perpetual challenge. AIAA journal, 40(10), 1984-1996. doi:https://doi.org/10.2514/2.1560
- Karpov, S., & Saburov, E. (1998). Optimization of geometric parameters for cyclone separators. Theor. Foun. of Chem. Eng., 32(1), 7-12.
Khoshtaghaza, M., & Mehdizadeh, R. (2006). Aerodynamic properties of wheat kernel and straw materials. Agr. Eng. Intern.: CIGR Jour.
- Kozołub, P., Klimanek, A., Białecki, R. A., & Adamczyk, W. P. (2017). Numerical simulation of a dense solid particle flow inside a cyclone separator using the hybrid Euler–Lagrange approach. Particuol., 31, 170-180. doi:https://doi.org/10.1016/j.partic.2016.09.003
- Li, H., Li, Y., Gao, F., Zhao, Z., & Xu, L. (2012). CFD–DEM simulation of material motion in air-and-screen cleaning device. Comp. and Electr. in Agr., 88, 111-119. doi:https://doi.org/10.1016/j.compag.2012.07.006
- Li, S., Yang, H., Zhang, H., Yang, S., Lu, J., & Yue, G. (2009). Measurements of solid concentration and particle velocity distributions near the wall of a cyclone. Chem. Eng. Jour., 150(1), 168-173. doi:https://doi.org/10.1016/j.cej.2008.12.019
- Lim, K., Kwon, S., & Lee, K. (2003). Characteristics of the collection efficiency for a double inlet cyclone with clean air. Jour. of Aerosol Sci., 34(8), 1085-1095. doi:https://doi.org/10.1016/S0021-8502(03)00079-X
- Liu, F., Zhang, J., & Chen, J. (2018). Modeling of flexible wheat straw by discrete element method and its parameter calibration. Inter. Jour. of Agri.. and Biologi. Eng., 11(3), 42-46. doi:DOI: 10.25165/j.ijabe.20181103.3381
- Ma, L., Fu, P., Wu, J., Wang, F., Li, J., Shen, Q., & Wang, H. (2015). CFD simulation study on particle arrangements at the entrance to a swirling flow field for improving the separation efficiency of cyclones. Aerosol and Air Qual. Res., 15(6), 2456-2465.
doi:https://doi.org/10.4209/aaqr.2015.02.0126
- Marinuc, M., & Rus, F. (2011). The effect of particle size and input velocity on cyclone separation process. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering. Series II, 4(2), 117.
- Neuwirth, J., Antonyuk, S., Heinrich, S., & Jacob, M. (2013). CFD–DEM study and direct measurement of the granular flow in a rotor granulator. Chemi. Eng. Sci., 86, 151-163. doi:https://doi.org/10.1016/j.ces.2012.07.005
- O'dogherty, M., Huber, J., Dyson, J., & Marshall, C. (1995). A study of the physical and mechanical properties of wheat straw. Jour. of Agri. Eng. Res., 62(2), 133-142. doi:https://doi.org/10.1006/jaer.1995.1072
- Peng, G., Huang, X., Zhou, L., Zhou, G., & Zhou, H. (2020). Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Engin. Fail. Analy., 114, 104602. doi:https://doi.org/10.1016/j.engfailanal.2020.104602
- Peng, W., Hoffmann, A., Boot, P., Udding, A., Dries, H., Ekker, A., & Kater, J. (2002). Flow pattern in reverse-flow centrifugal separators. Pow. Tech., 127(3), 212-222. doi:https://doi.org/10.1016/S0032-5910(02)00148-1
- Rocky, E. (2018). Rocky DEM technical manual.
- Sitkei, G. (1987). Mechanics of agricultural materials: Elsevier.
- Slack, M., Prasad, R., Bakker, A., & Boysan, F. (2000). Advances in cyclone modelling using unstructured grids. Chem. Engi. Res. and Des., 8(78), 1098-1104. doi:https://doi.org/10.1205/026387600528373
- Stepanenko, S. (2017). Research pneumatic gravity separation grain materials. Paper presented at the Scientific Proceedings V International Scientific-Technical Conference "Agricultural Machinery" 2017.
- Şendoğan, Ö. (2012). Desing of High Efficient Cyclone and Experimental Investigation Its Performance (MSc Thesis). Uludağ University,
- Vose, J. (1978). Separating grain components by air classification. Separation and Purification Methods, 7(1), 1-29.
- Walton, O. R., & Braun, R. L. (1986). Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of rheology, 30(5), 949-980.
- Wan, G., Sun, G., Xue, X., & Shi, M. (2008). Solids concentration simulation of different size particles in a cyclone separator. Pow. Tech., 183(1), 94-104. doi:https://doi.org/10.1016/j.powtec.2007.11.019
- Wang, B., Xu, D., Chu, K., & Yu, A. (2006). Numerical study of gas–solid flow in a cyclone separator. Appli. Math. Model., 30(11), 1326-1342. doi:https://doi.org/10.1016/j.apm.2006.03.011
- Wang, L., Parnell, C. B., & Shaw, B. W. (2002). A study of the cyclone fractional efficiency curves. Intern.. Comm. of Agri. Engi., 4. doi:https://hdl.handle.net/1813/10270
- Xiang, R., & Lee, K. (2005). Numerical study of flow field in cyclones of different height. Chem. Engin. and Proces.: Proc. Inten., 44(8), 877-883. doi:https://doi.org/10.1016/j.cep.2004.09.006
- Zhou, L., Han, C., Bai, L., Li, W., El-Emam, M. A., & Shi, W. (2020). CFD-DEM bidirectional coupling simulation and experimental investigation of particle ejections and energy conversion in a spouted bed. Energ., 211, 118672.
doi:https://doi.org/10.1016/j.energy.2020.118672
- Zhu, H., Zhou, Z., Yang, R., & Yu, A. (2008). Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Engin. Sci., 63(23), 5728-5770. doi:https://doi.org/10.1016/j.ces.2008.08.006