Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Sesame (Sesamum indicum L.) Lines Under Salt Stress for Yield Using SSR Markers

Yıl 2023, Cilt: 33 Sayı: 3, 397 - 407, 30.09.2023
https://doi.org/10.29133/yyutbd.1163062

Öz

Salinity has undesirable effects on sesame yield. In order to reduce salt's harmful effects, sesame tolerance needs to be increased. Twenty-three lines of sesame were irrigated with saline water (70 and 90 mM NaCl) and evaluated based on seed yield over two seasons (2019–2020). Genotypes were evaluated in a randomized complete block design (RCBD) with three replications. Ten SSR molecular markers were used to evaluate these lines for salt tolerance. Genotypes showed significant differences (p <0.05) and recorded a wide range of seed yields under optimum and salinity conditions. Four lines (C1.5, C2.2, C8.4, and C9.15) achieved the highest average performance for seed yield compared to other lines under salinity conditions. Ten SSR markers revealed 15 alleles, ranging from 1 to 4 alleles. The polymorphism information content (PIC) ranged from 0.00 to 0.44. The range of expected heterozygosity (He) was 0.00 to 0.444. The UPGMA dendrogram analysis divided all sesame genotypes into two main clusters. In addition, SSR 3 and SSR 6 markers elucidated the possibility of using them in breeding programs for enhancing salt tolerances in sesame cultivars. These lines may be used as a salt-tolerant source in future breeding to create new sesame cultivars.

Destekleyen Kurum

National Research Centre and the Science and Technology Development Fund

Proje Numarası

(grant numbers [110 30127] and [34898]).

Teşekkür

Thanks to the National Research Centre and the Science and Technology Development Fund for supporting this research.

Kaynakça

  • Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J. P., Qureshi, M. I., & Singh, N. K. (2012). DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of genetics, 91(3), 385-395. https://doi.org/10.1007/s12041-012-0201-3
  • Amiryousefi, A., Hyvönen, J., & Poczai, P. (2018). iMEC: Online marker efficiency calculator. Applications in plant sciences, 6(6), e01159. https://doi.org/ 10.1002/aps3.1159
  • Asekova, S., Kulkarni, K.P., Oh, K.W., Lee, M.H., Oh, E., Kim, J.I., Yeo, U., Pae, U.S., Ha, T.J. & Kim, S.U. (2018). Analysis of molecular variance and population structure of sesame (Sesamum indicum L.) genotypes using SSR markers. Plant breeding and biotechnology, 6(4), 321-336. https://doi.org/10.9787/PBB.2018.6.4.321
  • Bahrami, H., Jafari, A.O. & Razmjoo, J. (2016). Effect of salinity levels (NaCl) on yield, yield components and quality content of sesame (Sesamum indicum L.) cultivars. Environmental Management and Sustainable Development, 5(2), 104-117. https://doi.org/10.5296/emsd.v5i2.9852
  • Baruah, J., Pandey, S. K., Sarmah, N. & Lal, M. (2019). Assessing molecular diversity among high capsaicin content lines of Capsicum chinense Jacq. using simple sequence repeat marker. Industrial Crops and Products, 141, 111769.‏ https://doi.org/10.1016/j.indcrop.2019.111769
  • Bazrafshan, A. H., & Ehsanzadeh, P. (2014). Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica, 52(1), 134-147. https://doi.org/10.1007/s11099-014-0015-z
  • Bazrafshan, A.H. & Ehsanzadeh, P. (2016). Evidence for differential lipid peroxidation and antioxidant enzyme activities in Sesamum indicum L. genotypes under NaCl salinity. Journal of Agricultural Science and Technology, 18, 207-222.
  • Bekele, A., Besufekad, Y., Adugna, S., & Yinur, D. (2017). Screening of selected accessions of Ethiopian sesame (Sesame indicum L.) for salt tolerance. Biocatalysis and Agricultural Biotechnology, 9, 82-94. https://doi.org/10.1016/j.bcab.2016.11.009
  • Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 68(12), 3129-3143. https://doi.org/10.1 093/jxb/erx14
  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3), 314.
  • Boureima, S., Eyletters, M., Diouf, M., Diop, T. A., & Van Damme, P. (2011). Sensitivity of Seed Germination and Seedling Radicle Growth to Drought Stress in Sesame Sesamum indicum L. Research Journal of Environmental Sciences, 5(6), 557.
  • Chen, Y., Dai, Y., Li, Y., Yang, J., Jiang, Y., Liu, G., Yu, C., Zhong, F., Lian, B. & Zhang, J. (2022). Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5. BMC plant biology, 22(1), 1-17.‏ https://doi.org/10.1186/s12870-022-03487-y
  • Chesnokov, Y. V., & Artemyeva, A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Сельскохозяйственная биология, (5 (eng), 571-578. de Sousa Araújo, E., Arriel, N. H. C., dos Santos, R. C., & de Lima, L. M. (2019). Assessment of genetic variability in sesame accessions using SSR markers and morpho-agronomic traits. Australian Journal of Crop Science, 13(1), 45-54. https://doi.org/10.21475/ajcs.19.13.01. p1157
  • Dias, A.S., Lima, G.S.D., Gheyi, H.R. Nobre, R. G., & Santos, J. B. D. (2017). Emergence, growth and production of sesame under salt stress and proportions of nitrate and ammonium. Revista Caatinga, 30(2), 458-467. https://doi.org/10.1590/1983-21252017v30n221rc
  • Dossa, K., Wei, X., Li, D., Fonceka, D. Zhang, Y. Wang, L. Yu, J. Boshou, L. Diouf, D. Cissé N. & Zhang X. (2016). Insight into the AP2/ERF transcription factor super family in sesame and expression profiling of DREB subfamily under drought stress. BMC plant biology, 16(1), 1-16https://doi.org/10.1186/s12870-016-0859-4
  • Dossa, K., Diouf, D., Wang, L., Wei, X., Zhang, Y., Niang, M., Fonceka, D., Yu, J., Mmadi, M. A., Yehouessi, L. W., Liao, B., Zhang, X. & Cisse, N. (2017). The emerging oilseed crop Sesamum indicum enters the “Omics” era. Frontiers in plant science, 8, 1154.https://doi.org/10.3389/fpls.2017.01154
  • El-Hamidi, M., & Zaher, F.A. (2018). Production of vegetable oils in the world and in Egypt: an overview. Bulletin of the National Research Centre, 42(19), 1-9. https://doi.org/10.1186/s42269-018-0019-0
  • Gaballah, M. M., Fiaz, S., Wang, X., Younas, A., Khan, S. A., Wattoo, F. M., & Shafiq, M. R. (2021). Identification of genetic diversity among some promising lines of rice under drought stress using SSR markers. Journal of Taibah University for Science, 15(1), 468-478.
  • Harris, B. N., Sadras, V. O., & Tester, M. (2010). A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant and Soil, 336(1), 377-389. https://doi.org/10.1007/s11104-010-0489-9
  • Islam, F., Gill, R. A., Ali, B., Farooq, M. A., Xu, L., Najeeb, U., & Zhou, W. (2016). Sesame. In breeding oilseed crops for sustainable production (pp. 135-147). Academic Press.
  • Jajoo, A. (2013). Changes in Photosystem II in response to salt stress: In Eco- physiology and Responses of Plants under Salt Stress. (pp.149-168). Springer, New York, NY. ‏https://doi.org/10.1007/978-1-4614-4747-4-5
  • Lee, J., Lee, Y., & Choe, E. (2008). Effects of sesamol, sesamin, and sesamolin extracted from roasted sesame oil on the thermal oxidation of methyl linoleate. LWT-Food Science and Technology, 41(10), 1871-1875.
  • Li, D., Dossa, K., Zhang, Y., Wei, X., Wang, L., Zhang, Y., Liu, A., Zhou, R., & Zhang, X. (2018). GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes, 9(2), 1-19. https://doi.org/10.3390/genes9020087
  • Mir, R. R., Kumar, J., Balyan, H. S., & Gupta, P. K. (2012). A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genetic resources and crop evolution, 59(5), 717-726.
  • Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004
  • MSTAT-C program (1991). A software program for the design, management and analysis of Agronomic research experiments. Michigan State University.
  • Nagaraju, J., Reddy, K. D., Nagaraja, G. M., & Sethuraman, B. N. (2001). Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 86(5), 588-597. https://doi.org/10.1046/j.1365-2540.2001.00861.x
  • Pandey, S. K., Das, A., Rai, P., & Dasgupta, T. (2015). Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiology and Molecular Biology of Plants, 21(4), 519-529.
  • Parvaiz, A., Khalid, U. R. H., Ashwani, K., Muhammad, A., & Nudrat, A. A. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11), 2694-2703. https://doi.org/10.5897/AJB11.3203
  • Raghunath, S. (2022). Application of Bioinformatics resources for mining of simple sequence repeats (SSRs) marker in plant genomes: An Overview. Research Journal of Biotechnology, 17, 8.
  • ‏Ramprasad, E., Senthilvel, S., Jatoth, J. L., Yamini, K. N., Dangi, K. S., Ranganatha, A. R. G., & Varaprasad, K. S. (2017). An insight into morphological and molecular diversity in Indian sesame cultivars. Indian J. Genet, 77(2), 271-277.
  • Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system version 2.2 Exeter Publications. Setauket, NY. ‏ Qin, H., Li, Y., & Huang, R. (2020). Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 21(21), 8385. https://doi.org/10.3390/ijms21218385
  • Saha, J., Brauer, E. K., Sengupta, A., Popescu, S. C., Gupta, K., & Gupta, B. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science, 3, 21. https://doi.org/10.3389/fenvs.2015.00021
  • Sahab, F.A., Anter, A.S., Samaha, G.M, & Ziedan, S.H. (2021). Evaluation of sesame genotypes for yield, phytochemical characteristics and Fusarium wilt resistance by R-ISSR. Asian Journal of Plant Sciences, 20(2), 220-231. https://doi.org/10.3923/ajps.2021.220.231
  • Shafi, S., Tahir, M., Khan, M. A., Bhat, M., Kumar, U., Kumar, S., & Mir, R. (2021). Trait phenotyping and genic/random SSR markers characterization for breeding early maturing wheat’s for Western-Himalayas. Genetic Resources and Crop Evolution, https://doi.org/10.21203/rs.3.rs-217390/v1
  • Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Shahid A., Rossi, L., Gómez, C., Mattson, N., Nasim, W. & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938. https://doi.org/10.3390/agronomy10070938
  • Sharma, P., Mehta, G., Muthusamy, S. K., Singh, S. K., & Singh, G. P. (2021). Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding. Molecular Biology Reports, 48(1), 381-393. https://doi.org/10.1007/s11033-020-06059-1
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Shu, S., Guo, S. R., Sun, J., & Yuan, L. Y. (2012). Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia plantarum, 146(3), 285-296. https://doi.org/10.1111/j.1399-3054.2012.01623.x
  • Stavridou, E., Lagiotis, G., Kalaitzidou, P., Grigoriadis, I., Bosmali, I., Tsaliki, E.,Tsiotsiou, S., Kalivas, A., Gianopoulos, I., & Madesis, P. (2021). Characterization of the genetic diversity present in a diverse sesame landrace collection based on phenotypic traits and EST-SSR markers coupled with an HRM analysis. Plants, 10(4), 656.‏ https://doi.org/10.3390/plants10040656
  • Teklu, D. H., Shimelis, H., Tesfaye, A., Mashilo, J., Zhang, X., Zhang, Y. K., Dossa & Shayanowako, A. I. T. (2021). Genetic variability and population structure of Ethiopian Sesame (Sesamum indicum L.) germplasm assessed through phenotypic traits and simple sequence repeats markers. Plants, 10(6), 1129.‏ https://doi.org/10.3390/plants10061129
  • This, D., Comstock, J. & Courtois, B. (2010). Genetic analysis of water use efficiency in rice (Oryza sativa L.) at the leaf level. Rice, 3, 72-86. https://doi.org/10.1007/s12284-010-9036-9
  • Wei, X., Wang, L., Zhang, Y., Qi, X., Wang, X., Ding, X. & Zhang, X. (2014). Development of simple sequence repeats (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules, 19(4), 5150-5162.‏ https://doi.org/10.3390/molecules19045150
  • Wei, X., Zhu, X., Yu, J., Wang, L., Zhang, Y., Li, D., Zhou, R. & Zhang, X. (2016). Identification of sesame genomic variations from genome comparison of land race and variety. Frontiers in plant science, 7, 1169 https://doi.org/10.3389/fpls.2016.01169
  • Yepuri, V., Surapaneni, M., Kola, V. S. R., Vemireddy, L. R., Jyothi, B., Dineshkumar, V., Anuradha, G. & Siddiq, E. A. (2013). Assessment of genetic diversity in sesame (Sesamum indicum L.) genotypes, using ESTderived SSR markers. Journal of Crop Science and Biotechnology, 16(2), 93-103. https://doi.org/10.1007/s12892-012-0116-9
  • Zhang, Y., Li, D., Zhou, R., Liu, A., Wang, L., Zhang, Y., Zhang, Y., Gong, H., X., Zhang, and You, J. (2020). A collection of transcriptomic and proteomic datasets from sesame in response to salt stress. Data in brief, 32, 106096.‏ https://doi.org/10.1016/j.dib.2020.106096
Yıl 2023, Cilt: 33 Sayı: 3, 397 - 407, 30.09.2023
https://doi.org/10.29133/yyutbd.1163062

Öz

Proje Numarası

(grant numbers [110 30127] and [34898]).

Kaynakça

  • Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J. P., Qureshi, M. I., & Singh, N. K. (2012). DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of genetics, 91(3), 385-395. https://doi.org/10.1007/s12041-012-0201-3
  • Amiryousefi, A., Hyvönen, J., & Poczai, P. (2018). iMEC: Online marker efficiency calculator. Applications in plant sciences, 6(6), e01159. https://doi.org/ 10.1002/aps3.1159
  • Asekova, S., Kulkarni, K.P., Oh, K.W., Lee, M.H., Oh, E., Kim, J.I., Yeo, U., Pae, U.S., Ha, T.J. & Kim, S.U. (2018). Analysis of molecular variance and population structure of sesame (Sesamum indicum L.) genotypes using SSR markers. Plant breeding and biotechnology, 6(4), 321-336. https://doi.org/10.9787/PBB.2018.6.4.321
  • Bahrami, H., Jafari, A.O. & Razmjoo, J. (2016). Effect of salinity levels (NaCl) on yield, yield components and quality content of sesame (Sesamum indicum L.) cultivars. Environmental Management and Sustainable Development, 5(2), 104-117. https://doi.org/10.5296/emsd.v5i2.9852
  • Baruah, J., Pandey, S. K., Sarmah, N. & Lal, M. (2019). Assessing molecular diversity among high capsaicin content lines of Capsicum chinense Jacq. using simple sequence repeat marker. Industrial Crops and Products, 141, 111769.‏ https://doi.org/10.1016/j.indcrop.2019.111769
  • Bazrafshan, A. H., & Ehsanzadeh, P. (2014). Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica, 52(1), 134-147. https://doi.org/10.1007/s11099-014-0015-z
  • Bazrafshan, A.H. & Ehsanzadeh, P. (2016). Evidence for differential lipid peroxidation and antioxidant enzyme activities in Sesamum indicum L. genotypes under NaCl salinity. Journal of Agricultural Science and Technology, 18, 207-222.
  • Bekele, A., Besufekad, Y., Adugna, S., & Yinur, D. (2017). Screening of selected accessions of Ethiopian sesame (Sesame indicum L.) for salt tolerance. Biocatalysis and Agricultural Biotechnology, 9, 82-94. https://doi.org/10.1016/j.bcab.2016.11.009
  • Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 68(12), 3129-3143. https://doi.org/10.1 093/jxb/erx14
  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3), 314.
  • Boureima, S., Eyletters, M., Diouf, M., Diop, T. A., & Van Damme, P. (2011). Sensitivity of Seed Germination and Seedling Radicle Growth to Drought Stress in Sesame Sesamum indicum L. Research Journal of Environmental Sciences, 5(6), 557.
  • Chen, Y., Dai, Y., Li, Y., Yang, J., Jiang, Y., Liu, G., Yu, C., Zhong, F., Lian, B. & Zhang, J. (2022). Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5. BMC plant biology, 22(1), 1-17.‏ https://doi.org/10.1186/s12870-022-03487-y
  • Chesnokov, Y. V., & Artemyeva, A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Сельскохозяйственная биология, (5 (eng), 571-578. de Sousa Araújo, E., Arriel, N. H. C., dos Santos, R. C., & de Lima, L. M. (2019). Assessment of genetic variability in sesame accessions using SSR markers and morpho-agronomic traits. Australian Journal of Crop Science, 13(1), 45-54. https://doi.org/10.21475/ajcs.19.13.01. p1157
  • Dias, A.S., Lima, G.S.D., Gheyi, H.R. Nobre, R. G., & Santos, J. B. D. (2017). Emergence, growth and production of sesame under salt stress and proportions of nitrate and ammonium. Revista Caatinga, 30(2), 458-467. https://doi.org/10.1590/1983-21252017v30n221rc
  • Dossa, K., Wei, X., Li, D., Fonceka, D. Zhang, Y. Wang, L. Yu, J. Boshou, L. Diouf, D. Cissé N. & Zhang X. (2016). Insight into the AP2/ERF transcription factor super family in sesame and expression profiling of DREB subfamily under drought stress. BMC plant biology, 16(1), 1-16https://doi.org/10.1186/s12870-016-0859-4
  • Dossa, K., Diouf, D., Wang, L., Wei, X., Zhang, Y., Niang, M., Fonceka, D., Yu, J., Mmadi, M. A., Yehouessi, L. W., Liao, B., Zhang, X. & Cisse, N. (2017). The emerging oilseed crop Sesamum indicum enters the “Omics” era. Frontiers in plant science, 8, 1154.https://doi.org/10.3389/fpls.2017.01154
  • El-Hamidi, M., & Zaher, F.A. (2018). Production of vegetable oils in the world and in Egypt: an overview. Bulletin of the National Research Centre, 42(19), 1-9. https://doi.org/10.1186/s42269-018-0019-0
  • Gaballah, M. M., Fiaz, S., Wang, X., Younas, A., Khan, S. A., Wattoo, F. M., & Shafiq, M. R. (2021). Identification of genetic diversity among some promising lines of rice under drought stress using SSR markers. Journal of Taibah University for Science, 15(1), 468-478.
  • Harris, B. N., Sadras, V. O., & Tester, M. (2010). A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant and Soil, 336(1), 377-389. https://doi.org/10.1007/s11104-010-0489-9
  • Islam, F., Gill, R. A., Ali, B., Farooq, M. A., Xu, L., Najeeb, U., & Zhou, W. (2016). Sesame. In breeding oilseed crops for sustainable production (pp. 135-147). Academic Press.
  • Jajoo, A. (2013). Changes in Photosystem II in response to salt stress: In Eco- physiology and Responses of Plants under Salt Stress. (pp.149-168). Springer, New York, NY. ‏https://doi.org/10.1007/978-1-4614-4747-4-5
  • Lee, J., Lee, Y., & Choe, E. (2008). Effects of sesamol, sesamin, and sesamolin extracted from roasted sesame oil on the thermal oxidation of methyl linoleate. LWT-Food Science and Technology, 41(10), 1871-1875.
  • Li, D., Dossa, K., Zhang, Y., Wei, X., Wang, L., Zhang, Y., Liu, A., Zhou, R., & Zhang, X. (2018). GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes, 9(2), 1-19. https://doi.org/10.3390/genes9020087
  • Mir, R. R., Kumar, J., Balyan, H. S., & Gupta, P. K. (2012). A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genetic resources and crop evolution, 59(5), 717-726.
  • Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004
  • MSTAT-C program (1991). A software program for the design, management and analysis of Agronomic research experiments. Michigan State University.
  • Nagaraju, J., Reddy, K. D., Nagaraja, G. M., & Sethuraman, B. N. (2001). Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 86(5), 588-597. https://doi.org/10.1046/j.1365-2540.2001.00861.x
  • Pandey, S. K., Das, A., Rai, P., & Dasgupta, T. (2015). Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiology and Molecular Biology of Plants, 21(4), 519-529.
  • Parvaiz, A., Khalid, U. R. H., Ashwani, K., Muhammad, A., & Nudrat, A. A. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11), 2694-2703. https://doi.org/10.5897/AJB11.3203
  • Raghunath, S. (2022). Application of Bioinformatics resources for mining of simple sequence repeats (SSRs) marker in plant genomes: An Overview. Research Journal of Biotechnology, 17, 8.
  • ‏Ramprasad, E., Senthilvel, S., Jatoth, J. L., Yamini, K. N., Dangi, K. S., Ranganatha, A. R. G., & Varaprasad, K. S. (2017). An insight into morphological and molecular diversity in Indian sesame cultivars. Indian J. Genet, 77(2), 271-277.
  • Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system version 2.2 Exeter Publications. Setauket, NY. ‏ Qin, H., Li, Y., & Huang, R. (2020). Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 21(21), 8385. https://doi.org/10.3390/ijms21218385
  • Saha, J., Brauer, E. K., Sengupta, A., Popescu, S. C., Gupta, K., & Gupta, B. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science, 3, 21. https://doi.org/10.3389/fenvs.2015.00021
  • Sahab, F.A., Anter, A.S., Samaha, G.M, & Ziedan, S.H. (2021). Evaluation of sesame genotypes for yield, phytochemical characteristics and Fusarium wilt resistance by R-ISSR. Asian Journal of Plant Sciences, 20(2), 220-231. https://doi.org/10.3923/ajps.2021.220.231
  • Shafi, S., Tahir, M., Khan, M. A., Bhat, M., Kumar, U., Kumar, S., & Mir, R. (2021). Trait phenotyping and genic/random SSR markers characterization for breeding early maturing wheat’s for Western-Himalayas. Genetic Resources and Crop Evolution, https://doi.org/10.21203/rs.3.rs-217390/v1
  • Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Shahid A., Rossi, L., Gómez, C., Mattson, N., Nasim, W. & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938. https://doi.org/10.3390/agronomy10070938
  • Sharma, P., Mehta, G., Muthusamy, S. K., Singh, S. K., & Singh, G. P. (2021). Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding. Molecular Biology Reports, 48(1), 381-393. https://doi.org/10.1007/s11033-020-06059-1
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Shu, S., Guo, S. R., Sun, J., & Yuan, L. Y. (2012). Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia plantarum, 146(3), 285-296. https://doi.org/10.1111/j.1399-3054.2012.01623.x
  • Stavridou, E., Lagiotis, G., Kalaitzidou, P., Grigoriadis, I., Bosmali, I., Tsaliki, E.,Tsiotsiou, S., Kalivas, A., Gianopoulos, I., & Madesis, P. (2021). Characterization of the genetic diversity present in a diverse sesame landrace collection based on phenotypic traits and EST-SSR markers coupled with an HRM analysis. Plants, 10(4), 656.‏ https://doi.org/10.3390/plants10040656
  • Teklu, D. H., Shimelis, H., Tesfaye, A., Mashilo, J., Zhang, X., Zhang, Y. K., Dossa & Shayanowako, A. I. T. (2021). Genetic variability and population structure of Ethiopian Sesame (Sesamum indicum L.) germplasm assessed through phenotypic traits and simple sequence repeats markers. Plants, 10(6), 1129.‏ https://doi.org/10.3390/plants10061129
  • This, D., Comstock, J. & Courtois, B. (2010). Genetic analysis of water use efficiency in rice (Oryza sativa L.) at the leaf level. Rice, 3, 72-86. https://doi.org/10.1007/s12284-010-9036-9
  • Wei, X., Wang, L., Zhang, Y., Qi, X., Wang, X., Ding, X. & Zhang, X. (2014). Development of simple sequence repeats (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules, 19(4), 5150-5162.‏ https://doi.org/10.3390/molecules19045150
  • Wei, X., Zhu, X., Yu, J., Wang, L., Zhang, Y., Li, D., Zhou, R. & Zhang, X. (2016). Identification of sesame genomic variations from genome comparison of land race and variety. Frontiers in plant science, 7, 1169 https://doi.org/10.3389/fpls.2016.01169
  • Yepuri, V., Surapaneni, M., Kola, V. S. R., Vemireddy, L. R., Jyothi, B., Dineshkumar, V., Anuradha, G. & Siddiq, E. A. (2013). Assessment of genetic diversity in sesame (Sesamum indicum L.) genotypes, using ESTderived SSR markers. Journal of Crop Science and Biotechnology, 16(2), 93-103. https://doi.org/10.1007/s12892-012-0116-9
  • Zhang, Y., Li, D., Zhou, R., Liu, A., Wang, L., Zhang, Y., Zhang, Y., Gong, H., X., Zhang, and You, J. (2020). A collection of transcriptomic and proteomic datasets from sesame in response to salt stress. Data in brief, 32, 106096.‏ https://doi.org/10.1016/j.dib.2020.106096
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi, Agronomi
Bölüm Makaleler
Yazarlar

Ghada Samaha 0000-0003-2937-755X

Lamyaa M. Sayed Bu kişi benim 0000-0001-9928-4506

Ayman A. Saber Bu kişi benim 0000-0003-0028-0703

Proje Numarası (grant numbers [110 30127] and [34898]).
Erken Görünüm Tarihi 11 Eylül 2023
Yayımlanma Tarihi 30 Eylül 2023
Kabul Tarihi 13 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 33 Sayı: 3

Kaynak Göster

APA Samaha, G., Sayed, L. M., & Saber, A. A. (2023). Evaluation of Sesame (Sesamum indicum L.) Lines Under Salt Stress for Yield Using SSR Markers. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 397-407. https://doi.org/10.29133/yyutbd.1163062

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.