Araştırma Makalesi
BibTex RIS Kaynak Göster

Tocopherol Content of Euglena sp. Isolated from Yogyakarta under Glucose and Ethanol Mixture Treatment

Yıl 2023, Cilt: 33 Sayı: 3, 450 - 460, 30.09.2023
https://doi.org/10.29133/yyutbd.1216693

Öz

Euglena sp. is a microalgae with significant potential for utilization as a high-value product because of the presence of protein, lipid, paramylon, and other compounds. Even though these microalgae may be found in freshwater, research on enhancing Euglena sp. cultivation is still limited in Indonesia. Tocopherols are antioxidants that can effectively protect against diseases caused by oxidative stress. The isomer of tocopherol with the highest biological activity is α-tocopherol. Euglena sp. cells had the highest levels of α-tocopherol compared to other microorganisms. Scientists are continuously trying to determine how to obtain a high α-tocopherol concentration and a significant Euglena cell biomass. Photosynthetic organisms culture has been found to boost α-tocopherol content in Euglena sp., although heterotrophic culture can potentially increase biomass. This study used photoheterotrophic culture with a mixture of glucose and ethanol to increase the α-tocopherol and biomass concentration inside the culture of the local strain of Euglena sp. The addition of treatments in a glucose and ethanol combination with levels of 3:2; 2.5: 2.5; 2: 2; and 0:0 (control) g L-1 was used in this study to assess the impact of Euglena sp. culture on growth, biomass, and α-tocopherol concentration. According to the findings of this study, the 3:2 treatment produced the most significant specific growth rate and biomass, including 0.992 (OD680/OD680/day) and 8.480 (g L-1). In contrast, the 2.5:2.5 treatment produced the highest α-tocopherol content, specifically 7.09±0.096 mg L-1.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Afiukwa, C. A,. & Ogbonna, J. (2007). Effects of mixed substrates on growth and vitamin production by Euglena gracilis. African Journal of Biotechnology, 6(22), 2612-2615. https://doi.org/10.5897/AJB2007.000-2417.
  • Aqilla, W. Z. (2021). Pengaruh Campuran Glukosa Dan Etanol Terhadap Pertumbuhan Dan Kandungan Α-Tocopherol Pada Kultur Fotoheterotrofik Euglena sp. Strain 2 Skala Laboratorium. (Undergraduate thesis), Universitas Gadjah Mada, Faculty of Biology, Yogyakarta, Indonesia.
  • Ben-Amotz, A. (2004). Industrial Production of Microalgal Cell-Mass and Secondary Products—Major Industrial Species: Dunaliella. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Oxford, 273-280.
  • Cramer, M., & Myers, J. (1952). Growth and photosynthetic characteristics of Euglena gracilis. Archiv für Mikrobiologie, 17, 384-402.
  • Delgado, A., Al-Hamimi, S., Ramadan, M. F., Wit, M. D., Durazzo, A., Nyam, K. L., & Issaoui, M. (2020). Contribution of tocols to foof sensorial properties, stability, and overall quality. Journal of Food Quality, 1-8. https://doi.org/10.1155/2020/8885865.
  • Erfianti, T., Maghfiroh, K. Q., Amelia, R., Kurnianto, D., Sadewo, B. R., Marno, S., Devi, I. Dewayanto N., Budiman, A., & Suyono, E.A. (2023). Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng Peatland, Central Java, Indonesia, and their potential as bio-avtur. IOP Conf. Series: Earth and Environmental Science. 1151 (2023) 012059. http://doi:10.1088/1755-1315/1151/1/012059.
  • Fujita, T., Aoyagi, H., Ogbonna, J. C., & Tanaka, H. (2008). Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Applicative Microbiology Technology, 79, 371–378. https://doi.org/10.1007/s00253-008-1443-0.
  • Gissibl, A., Sun, A., Care, A., Nevalainen, H., & Sunna, A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, 108. https://doi.org/10.3389/fbioe.2019.00108.
  • Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol, 6, 613–624. https://doi.org/10.1038/nrmicro2032.
  • Grimm, P., Risse, J. M., Cholewa, D., Muller, J. M., Beshay, U., Friehs, K., & Flaschel, E. (2015). Applicability of Euglena gracilis for biorefineries demonstrated by the α-tocopherol and paramylon followed by anaerobic digestion. Journal of Biotechnology, 215, 72 – 79. https://doi.org/10.1016/j.jbiotec.2015.04.004
  • Hadiyanto, H., & Nur, M. A. (2012). Mikroalga Sumber Pangan Dan Energi Masa Depan. Undip Press, Semarang, Indonesia.
  • Irawan, A.P., Rahmawati, A., Fahmi, U.A., Budiman, A., Maghfiroh, K.Q., Erfianti, T., Andeska, D.P., Putri, R.A.E., Nurafifah, I., Sadewo, B.R., Suyono, E.A. 2023. Studies on bioflocculant exopolysaccharides (EPS) produced by Anabaena sp. and its application as bioflocculant for low-cost harvesting of Chlorella sp. Asian J Agric & Biol. (3). doi:10.35495/ajab.2022.150.
  • Jarboe, L. R., Royce, L.A., & Liu, P. (2013). Understanding biocatalyst inhibition by carboxylic acids. Frontiers in Microbiology, 4(272), 1-8.
  • Liu, J., Huang, J., & Chen, F. (2011). Microalgae as Feedstocks for Biodiesel Production. In: Biodiesel - Feedstocks and Processing Technologies. Croatia, 58-78.
  • Nurhanifah, N. D., Padil, & Muria, S. R. (2019). Kultivasi Mikroalga Menggunakan Media AF6 Berdasarkan Perbedaan Intensitas Cahaya. JOM FTEKNI, 6(1), 1-5.
  • Nur, F., Erfianti, T., Andeska, D. P., Putri, R. A. E., Nurafifah, I., Sadewo, B. R., & Suyono, E. A. (2023). Enhancement of Microalgal Metabolite Production through Euglena sp. Local Strain and Glagah Strain Consortia. Biosaintifika, 15 (1). 36-47.
  • Ogawa, T., & Aiba, S. (1981). Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and Bioengineerin. Bioeng., 23, 1121-1132. https://doi.org/10.1002/bit.260230519.
  • Ogbonna, J. C., Tomiyama, S., & Tanaka, H. (1998). Heterotrophic Cultivation of Euglena gracilis Z for Efficient Production of α-Tocopherol. Journal of Applied Phycology, 10(1), 67–74. https://doi.org/10.1023/A:1008011201437.
  • Potvin, G., & Zhang, Z. (2010). Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnology Advance, 28, 910-918. https://doi.10.1016/j.biotechadv.2010.08.006.
  • Pradana, Y. S., Sudibyo, H., Suyono, E. A., Indarto, & Budiman, A. (2017). Oil Algae Extraction of Selected Microalgae Species Grown in Monoculture and Mixed Cultures for Biodiesel Production. Energy Procedia, 105, 277–282. https://doi.org10.1016/j.egypro.2018.03.314.
  • Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signaling, 24(5), 981–990. https://doi.org/10.1016/j.cellsig.2012.01.008.
  • Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S., & Mahdi, F. (2014). The role vitamin E in human health and some diseases. Sultan Qaboos University Medical Journal, 14, e157-65.
  • Rodriguez-Zavala, J. S., Ortiz-Cruz, M. A., Mendoza-Hernández, G., & Moreno-Sánchez, R. (2010). Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 109(6), 2160-2172. https://doi.org/10.1111/j.1365-2672.2010.04848.x.
  • Schwelitz, F. D., Cisneros, P. L., & Jagielo, J. A. (1978). The effect of glucose on the biochemical and ultrastructural characteristics of developing Euglena chloroplasts. Journal Protozooogyl, 3(2), 398-403. https://doi.org/10.1111/j.1550-7408.1978.tb03914.x.
  • Shigeoka, S., Onishi, T., Nakano, Y., & Kitaoka, S. (1986). The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric. Biol. Chem., 50, 1063–1065. https://doi.org/10.1080/00021369.1986.10867518.
  • Sudibyo, H., Purwanti, Y., Pradana, Y.S., Samudra, T. T., Budiman, A., & Suyono, E. A. (2018). Modification of growth medium of mixed-culture species of microalgae isolated from southern java coastal region. MATEC Web of Conferences, 154, 1-6 https://doi.org/10.1051/matecconf/201815401001.
  • Suyono, E. A., Fahrunnida, Nopitasari, S., & Utama, I. (2016). Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from the local marine resource. Journal of Engineering and Applied Sciences, 11, 9970-9973.
  • Suzuki K. (2017). Large-scale cultivation of Euglena, In Schwartzbach, S.D., Shigeoka, S. (Eds). Euglena: Biochemistry, Cell, and Molecular Biology. Springer International Publishing, Cham., 285-293. https://doi.org/10.1007/978-3-319-54910-114.
  • Tunio, A.A., Naqvi, S.H., Tunio, Q.N., Charan, T.R., Bhutto, M.A., Mughari, M.H. 2022. Determination of Antioxidant, Antimicrobial Properties with Evaluation of Biochemicals and Phytochemicals Present in Oscillatoria limosa of District Jamshoro, Pakistan. Yuzuncu Yil University Journal of Agricultural Sciences. 32 (3); 538-547.
  • Yuarrina, W. P., Pradana, Y. S., Budiman, A., Majid, A. I., Indarto, & Suyono, E. A. (2018). Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor. Journal of Physics: Conference Series, 1022,1-9. https://doi.org/10.1088/1742-6596/1022/1/012051.
  • Zavala, J. S. R., Ortiz-Cruz, M. A., Mendoza-Hernandez, G., & Moreno-Sanchez, R. (2010). Increased synthesis of α-tocopherol, paramylon, and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 109(6), 2160-2162. https://doi.org/10.1111/j.1365-2672.2010.04848.x.
  • Zhang, X., Jantama, K., Moore, J. C., Jarboe, L. R., Shanmugam, K. T., & Ingram, L. O. (2009). Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA, 106(48), 20180-20185. https://doi.org/10.1073/pnas.0905396106.
  • Zulkarnain, I. M., Rahayu, H. T., Herida, A. P., Erfianti, T., Kusumaningrum, H. P., Zainuri, M., Endrawati, H., Widowati, I., Haryanti, W. D. U., & Mahendrajaya, R. T. 2020. Improvement of the potency of microalgae Nannochloropsis and Chaetoceros through antioxidant analysis and optimization of DNA isolation. Journal of Physics: Conference Series. 1943. 012080. https://doi:10.1088/1742-6596/1943/1/012080.
Yıl 2023, Cilt: 33 Sayı: 3, 450 - 460, 30.09.2023
https://doi.org/10.29133/yyutbd.1216693

Öz

Proje Numarası

-

Kaynakça

  • Afiukwa, C. A,. & Ogbonna, J. (2007). Effects of mixed substrates on growth and vitamin production by Euglena gracilis. African Journal of Biotechnology, 6(22), 2612-2615. https://doi.org/10.5897/AJB2007.000-2417.
  • Aqilla, W. Z. (2021). Pengaruh Campuran Glukosa Dan Etanol Terhadap Pertumbuhan Dan Kandungan Α-Tocopherol Pada Kultur Fotoheterotrofik Euglena sp. Strain 2 Skala Laboratorium. (Undergraduate thesis), Universitas Gadjah Mada, Faculty of Biology, Yogyakarta, Indonesia.
  • Ben-Amotz, A. (2004). Industrial Production of Microalgal Cell-Mass and Secondary Products—Major Industrial Species: Dunaliella. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Oxford, 273-280.
  • Cramer, M., & Myers, J. (1952). Growth and photosynthetic characteristics of Euglena gracilis. Archiv für Mikrobiologie, 17, 384-402.
  • Delgado, A., Al-Hamimi, S., Ramadan, M. F., Wit, M. D., Durazzo, A., Nyam, K. L., & Issaoui, M. (2020). Contribution of tocols to foof sensorial properties, stability, and overall quality. Journal of Food Quality, 1-8. https://doi.org/10.1155/2020/8885865.
  • Erfianti, T., Maghfiroh, K. Q., Amelia, R., Kurnianto, D., Sadewo, B. R., Marno, S., Devi, I. Dewayanto N., Budiman, A., & Suyono, E.A. (2023). Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng Peatland, Central Java, Indonesia, and their potential as bio-avtur. IOP Conf. Series: Earth and Environmental Science. 1151 (2023) 012059. http://doi:10.1088/1755-1315/1151/1/012059.
  • Fujita, T., Aoyagi, H., Ogbonna, J. C., & Tanaka, H. (2008). Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Applicative Microbiology Technology, 79, 371–378. https://doi.org/10.1007/s00253-008-1443-0.
  • Gissibl, A., Sun, A., Care, A., Nevalainen, H., & Sunna, A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, 108. https://doi.org/10.3389/fbioe.2019.00108.
  • Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol, 6, 613–624. https://doi.org/10.1038/nrmicro2032.
  • Grimm, P., Risse, J. M., Cholewa, D., Muller, J. M., Beshay, U., Friehs, K., & Flaschel, E. (2015). Applicability of Euglena gracilis for biorefineries demonstrated by the α-tocopherol and paramylon followed by anaerobic digestion. Journal of Biotechnology, 215, 72 – 79. https://doi.org/10.1016/j.jbiotec.2015.04.004
  • Hadiyanto, H., & Nur, M. A. (2012). Mikroalga Sumber Pangan Dan Energi Masa Depan. Undip Press, Semarang, Indonesia.
  • Irawan, A.P., Rahmawati, A., Fahmi, U.A., Budiman, A., Maghfiroh, K.Q., Erfianti, T., Andeska, D.P., Putri, R.A.E., Nurafifah, I., Sadewo, B.R., Suyono, E.A. 2023. Studies on bioflocculant exopolysaccharides (EPS) produced by Anabaena sp. and its application as bioflocculant for low-cost harvesting of Chlorella sp. Asian J Agric & Biol. (3). doi:10.35495/ajab.2022.150.
  • Jarboe, L. R., Royce, L.A., & Liu, P. (2013). Understanding biocatalyst inhibition by carboxylic acids. Frontiers in Microbiology, 4(272), 1-8.
  • Liu, J., Huang, J., & Chen, F. (2011). Microalgae as Feedstocks for Biodiesel Production. In: Biodiesel - Feedstocks and Processing Technologies. Croatia, 58-78.
  • Nurhanifah, N. D., Padil, & Muria, S. R. (2019). Kultivasi Mikroalga Menggunakan Media AF6 Berdasarkan Perbedaan Intensitas Cahaya. JOM FTEKNI, 6(1), 1-5.
  • Nur, F., Erfianti, T., Andeska, D. P., Putri, R. A. E., Nurafifah, I., Sadewo, B. R., & Suyono, E. A. (2023). Enhancement of Microalgal Metabolite Production through Euglena sp. Local Strain and Glagah Strain Consortia. Biosaintifika, 15 (1). 36-47.
  • Ogawa, T., & Aiba, S. (1981). Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and Bioengineerin. Bioeng., 23, 1121-1132. https://doi.org/10.1002/bit.260230519.
  • Ogbonna, J. C., Tomiyama, S., & Tanaka, H. (1998). Heterotrophic Cultivation of Euglena gracilis Z for Efficient Production of α-Tocopherol. Journal of Applied Phycology, 10(1), 67–74. https://doi.org/10.1023/A:1008011201437.
  • Potvin, G., & Zhang, Z. (2010). Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnology Advance, 28, 910-918. https://doi.10.1016/j.biotechadv.2010.08.006.
  • Pradana, Y. S., Sudibyo, H., Suyono, E. A., Indarto, & Budiman, A. (2017). Oil Algae Extraction of Selected Microalgae Species Grown in Monoculture and Mixed Cultures for Biodiesel Production. Energy Procedia, 105, 277–282. https://doi.org10.1016/j.egypro.2018.03.314.
  • Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signaling, 24(5), 981–990. https://doi.org/10.1016/j.cellsig.2012.01.008.
  • Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S., & Mahdi, F. (2014). The role vitamin E in human health and some diseases. Sultan Qaboos University Medical Journal, 14, e157-65.
  • Rodriguez-Zavala, J. S., Ortiz-Cruz, M. A., Mendoza-Hernández, G., & Moreno-Sánchez, R. (2010). Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 109(6), 2160-2172. https://doi.org/10.1111/j.1365-2672.2010.04848.x.
  • Schwelitz, F. D., Cisneros, P. L., & Jagielo, J. A. (1978). The effect of glucose on the biochemical and ultrastructural characteristics of developing Euglena chloroplasts. Journal Protozooogyl, 3(2), 398-403. https://doi.org/10.1111/j.1550-7408.1978.tb03914.x.
  • Shigeoka, S., Onishi, T., Nakano, Y., & Kitaoka, S. (1986). The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric. Biol. Chem., 50, 1063–1065. https://doi.org/10.1080/00021369.1986.10867518.
  • Sudibyo, H., Purwanti, Y., Pradana, Y.S., Samudra, T. T., Budiman, A., & Suyono, E. A. (2018). Modification of growth medium of mixed-culture species of microalgae isolated from southern java coastal region. MATEC Web of Conferences, 154, 1-6 https://doi.org/10.1051/matecconf/201815401001.
  • Suyono, E. A., Fahrunnida, Nopitasari, S., & Utama, I. (2016). Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from the local marine resource. Journal of Engineering and Applied Sciences, 11, 9970-9973.
  • Suzuki K. (2017). Large-scale cultivation of Euglena, In Schwartzbach, S.D., Shigeoka, S. (Eds). Euglena: Biochemistry, Cell, and Molecular Biology. Springer International Publishing, Cham., 285-293. https://doi.org/10.1007/978-3-319-54910-114.
  • Tunio, A.A., Naqvi, S.H., Tunio, Q.N., Charan, T.R., Bhutto, M.A., Mughari, M.H. 2022. Determination of Antioxidant, Antimicrobial Properties with Evaluation of Biochemicals and Phytochemicals Present in Oscillatoria limosa of District Jamshoro, Pakistan. Yuzuncu Yil University Journal of Agricultural Sciences. 32 (3); 538-547.
  • Yuarrina, W. P., Pradana, Y. S., Budiman, A., Majid, A. I., Indarto, & Suyono, E. A. (2018). Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor. Journal of Physics: Conference Series, 1022,1-9. https://doi.org/10.1088/1742-6596/1022/1/012051.
  • Zavala, J. S. R., Ortiz-Cruz, M. A., Mendoza-Hernandez, G., & Moreno-Sanchez, R. (2010). Increased synthesis of α-tocopherol, paramylon, and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 109(6), 2160-2162. https://doi.org/10.1111/j.1365-2672.2010.04848.x.
  • Zhang, X., Jantama, K., Moore, J. C., Jarboe, L. R., Shanmugam, K. T., & Ingram, L. O. (2009). Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA, 106(48), 20180-20185. https://doi.org/10.1073/pnas.0905396106.
  • Zulkarnain, I. M., Rahayu, H. T., Herida, A. P., Erfianti, T., Kusumaningrum, H. P., Zainuri, M., Endrawati, H., Widowati, I., Haryanti, W. D. U., & Mahendrajaya, R. T. 2020. Improvement of the potency of microalgae Nannochloropsis and Chaetoceros through antioxidant analysis and optimization of DNA isolation. Journal of Physics: Conference Series. 1943. 012080. https://doi:10.1088/1742-6596/1943/1/012080.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Makaleler
Yazarlar

Wynona Zahra Aqilla 0000-0002-9633-6339

Dea Putri Andeska 0000-0002-6491-1060

Tia Erfianti 0000-0002-5462-1131

Brilian Ryan Sadewo Bu kişi benim

Eko Agus Suyono 0000-0002-9208-4541

Proje Numarası -
Erken Görünüm Tarihi 11 Eylül 2023
Yayımlanma Tarihi 30 Eylül 2023
Kabul Tarihi 23 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 33 Sayı: 3

Kaynak Göster

APA Aqilla, W. Z., Andeska, D. P., Erfianti, T., Sadewo, B. R., vd. (2023). Tocopherol Content of Euglena sp. Isolated from Yogyakarta under Glucose and Ethanol Mixture Treatment. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 450-460. https://doi.org/10.29133/yyutbd.1216693

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.