Research Article
BibTex RIS Cite

Micropropagation of Vaccinium corymbosum L.‘Bluecrop’ in Rocker Temporary Immersion System (TIS) Bioreactor

Year 2024, Volume: 34 Issue: 3, 442 - 451, 30.09.2024
https://doi.org/10.29133/yyutbd.1437017

Abstract

Blueberries are high-value fruits. The traditional method of propagation by cuttings cannot supply the modern market with large quantities of seedlings. The method of micropropagation of plants in vitro makes it possible to bring the production of blueberry seedlings to the highest level. Blueberries have not been sufficiently studied in in vitro culture, so the search for the simplest and most cost-effective methods of micropropagation remains relevant. The problem of accelerated micropropagation of blueberries can be solved using rocker-type bioreactors, which differ from other models in terms of simplicity of design and low cost. A study was carried out to evaluate the effectiveness of micropropagation of Vaccinium corymbosum 'Bluecrop' in rocker bioreactors. Two types of bioreactors were compared: the bioreactor of the Platform system and the TIS rocker bioreactor modified by the author. As a control, blueberries were grown on a semi-solid medium. The effectiveness of blueberry micropropagation was evaluated by the following indicators: multiplication coefficient, shoot length, and proportion of vitrified shoots. Experiments were conducted on WPM medium, with zeatin supplementation at a concentration of 1.0 mg/l, resulting in optimal results. It is shown that the rocker bioreactor is slightly inferior to the plantform bioreactor in micropropagation but outperforms the method of micropropagation on semisolid media. The rocker bioreactor can be fully utilized for production purposes. In order to reduce costs and increase technical reliability, the working principle of the mechanical drive of the author's model of a rocker-type bioreactor was changed.

References

  • Adelberg, J., & Toler, J. (2004). Comparison of agar and an agitated, thin-film, liquid system for micropropagation of ornamental elephant ears. HortScience, 39, 1088–1092. https://doi.org/10.21273/HORTSCI.39.5.1088
  • Ahmadian, M., Babaei, A., Shokri, S., & Hessami, S. (2017). Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. Journal of Genetic Engineering and Biotechnology, 15(2), 309-315. https://doi.org/10.1016/j.jgeb.2017.07.005
  • Aka Kaçar, Y., Biçen, B., Şimşek, Ö., Dönmez, D., & Erol, M. H. (2020). Evaluation and comparison of a new type of temporary immersion system tis bioreactors for myrtle (Myrtus communis L.). Applied Ecology and Environmental Research, 18, 1611-1620. https://doi.org/10.15666/aeer/1801_16111620
  • Almusawi, A. H. A., Sayegh, A. J., Alshanaw, A. M. S., & Griffis, J. L. (2017). Plantform bioreactor for mass micropropagation of date palm. Methods in Molecular Biology, 1637, 251-265. https://doi.org/10.1007/978-1-4939-7156-5_21. PMID: 28755351
  • Arigundam, U., Variyath, A. M, Siow, Y. L., Marshall, D., & Debnath, S. C. (2020). Liquid culture for efficient in vitro propagation of adventitious shoots in wild Vaccinium vitis-idaea ssp. minus (lingonberry) using temporary immersion and stationary bioreactors. Scientia Horticulturae, 264, 109199. https://doi.org/10.1016/j.scienta.2020.109199
  • Bello-Bello, J. J, Canto-Flick, A., Balam-Uc, E., Gomez-UC, E., & Robert, M. L. (2010). Improvement of in vitro proliferation and elongation of habanero pepper shoot (Capsicum chinense jacq.) by temporary immersion. HortScience, 45, 1093–1098. https://doi.org/10.21273/HORTSCI.45.7.1093
  • Borsai, O., Hârța, M., Pamfil, D., & Clapa, D. (2019) The effect of cytokinins on micropropagation success of highbush Blueberry (Vaccinium corymbosum L.). Agricultura, 111, 93–100.
  • Bošnjak, D., Marković, M., Agić, D., Vinković, T., Tkalec, M., Ravnjak, B., & Stanisavljević, A. (2021). The Influence of nutrient media modification on the morphological parameters in raspberry (Rubus idaeus L.) micropropagation in the liquid and semi-solid media. Poljoprivreda, 27, 22-29. https://doi.org/10.18047/poljo.27.1.3
  • Clapa, D., Nemeș, S. A., Ranga, F., Hârța, M., Vodnar, D. C., & Câlinoiu, L. F. (2022). Micropropagation of Vaccinium corymbosum L.: an alternative procedure for the production of secondary metabolites. Horticulturae, 8, 480. https://doi.org/10.3390/horticulturae8060480
  • Debnath, S. C. (2007). Influence of indole-3-butyric acid and propagation method on growth and development of in vitro and ex vitro-derived lowbush blueberry plants. Plant Growth Regulation, 51, 245–253. https:// doi.org/10.1007/s10725-006-9164-9
  • Debnath, S. C. (2017). Temporary immersion and stationary bioreactors for mass propagation of true-to-type highbush, half-high, and hybrid blueberries (Vaccinium spp.). The Journal of Horticultural Science and Biotechnology, 92, 72-80. https://doi.org/10.1080/14620316.2016.1224606
  • Etienne, H., & Berthouly, M. (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69, 215–231. https://doi.org/10.1023/A:1015668610465
  • Fan, S., Jian, D., Wei, X., Chen, J., Beeson, R. C., & Zhou, Z. (2017). Micropropagation of Blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in Vitro Shoot Culture. Scientia Horticulture, 226, 277–284. https://doi.org/10.1016/j.scienta.2017.08.052
  • Fira, A., Clapa, D., & Badescu, C. (2008). Aspects regarding the in vitro propagation of highbush blueberry cultivar Blue Crop. Bulletin UASVM, Horticulture, 65(1), 104-109.
  • Gallegos-Cedillo, V. M., Alvaro, J. E., Capatos, T. H., Hachmann, T. L., Carrasco, G., & Urrestarazu, M. (2018). Effect of pH and silicon in the fertigation solution on vegetative growth of blueberry plants in organic agriculture. HortScience, 53(10), 1423-1428. https://doi.org/10.21273/HORTSCI13342-18
  • Gao, H., Li, J., Ji, H., An, L., & Xia, X. (2018). Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp.). Plant Cell, Tissue and Organ Culture, 133, 65–76. https://doi.org/10.1007/s11240-017-1361-x
  • Georgiev, V., Schumann, A., Pavlov, A., & Bley, T. (2014). Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14, 607–621. https://doi.org/10.1002/elsc.201300166
  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
  • Jing, Y., Beleski, D., & Vendrame, W. (2024). Micropropagation and acclimatization of Monstera deliciosa Liebm. ‘Thai Constellation’. Horticulturae, 10, 1. https://doi.org/10.3390/horticulturae10010001
  • Kevers, C., Franck, T., Strasser, R., Dommes, S., & Gaspar, T. (2004). Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell, Tissue and Organ Culture, 77, 181–191. https://doi.org/10.1023/B:TICU.0000016825.18930.e4
  • Le, K-C., Johnson, S., Aidun, C. K., & Egertsdotter, U. (2023). In vitro propagation of the blueberry ‘Blue Suede™’ (Vaccinium hybrid) in semi-solid medium and temporary immersion bioreactors. Plants, 12, 2752. https://doi.org/10.3390/plants12152752
  • Litwinczuk, W., Szczerba, G., & Wrona, D. (2005). Field performance of highbush blueberries (Vaccinium × corymbosum L.) cv. ‘Herbert’ propagated by cuttings and tissue culture. Scientia Horticulturae, 106, 162–169. https:// doi.org/10.1016/j.scienta.2005.02.025
  • Marino, S. R., Williamson, J. G., Olmstead, J. W., & Harmon, P. F. (2014). Vegetative growth of three southern highbush blueberry cultivars obtained from micropropagation and softwood cuttings in two Florida locations. HortScience, 49(5), 556-561. https://doi.org/10.21273/HORTSCI.49.5.556
  • McCown, B. H., & Lloyd, G. (1981). Woody Plant Medium (WPM)—a mineral nutrient formulation for microculture of woody plant species. HortScience, 16, 453.
  • Mengist, M. F., Burtch, H., Debelo, H., Pottorff, M., Bostan, H., Nunn, C., Corbin, S., Kay, D. C., Bassil, N., Hummer, K., Lila, M. A., Ferruzzi, M. G., & Lorizzo, M. (2020). Development of a genetic framework to improve the efficiency of bioactive delivery from blueberry. Scientific Reports, 10(1), 17311. https://doi.org/10.1038/s41598-020-74280-w
  • Murthy, H. N., Joseph, K. S., Paek, K. Y., & Park, S. Y. (2023). Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science, 14, 1159588. https://doi.org/10.3389/fpls.2023.1159588
  • Ostrolucká, M. G., Gajdošová, A., Libiaková, G., Hrubíková, K., & Bežo, M. (2007). Protocol for micropropagation of selected Vaccinium sp. In S. M. Jain & H. Häggman (Eds.), Protocols for Micropropagation of Woody Trees and Fruits (pp. 445-455). Springer, Cham. https://doi.org/10.1007/978-1-4020-6352-7_41
  • Pena-Ramırez, Y., Juarez-Gomez. J., Gomez-Lopez, L., Jeronimo-Perez. J., Garsia-Shesena, I., & Robert, M. L. (2010). Multiple adventitious shoot formationin Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cellular and Developmental Biology Plant, 46, 149–160. https://doi.org/10.1007/s11627-010-9280-0
  • Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in plant tissue culture. Plants, 11, 3313. https://doi.org/10.3390/plants11233313
  • Robert, M., Herrera-Herrera, J., Castillo, E., Ojeda, G., & Herrera-Alamillo, M. A. (2006). An efficient method for the micropropagation of agave species. In V. M. Loyola-Vargas, F. A Vázquez-Flota (Eds.), Plant Cell Culture Protocols (pp. 165-178). Humana, New York. https://doi.org/10.1385/1-59259-959-1:165
  • Robert, M., Herrera-Herrera, J., Herrera-Herrera, G., Herrera-Alamillo, M. A., & Fuentes-Carrillo P. (2006a). A new temporary immersion bioreactor system for micropropagation. In: V. M. Loyola-Vargas, F. A Vázquez-Flota (Eds.), Plant Cell Culture Protocols (pp. 121-129). Humana, New Jersey. https://doi.org/10.1385/1-59259-959-1:121
  • Ruži, D., Vujović, T., Libiaková, G., Cerović, R., Gajdošová, A. (2012). Micropropagation in vitro highbush bluebery (Vaccinium corymbosum L.). Journal of Berry Research, 2, 97-103. https://doi.org/10.3233/JBR-2012-030
  • Sanyürek, K., Çakır, A., & Söylemezoğlu, G. (2021). Optimization of meristem culture to obtain virus-free clonal basic material of grape cultivars. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 617-628. https://doi.org/10.29133/yyutbd.885742
  • Sereda, M., Petrenko, V., Kapralova, O., Chokheli, V., Varduni, T., Dmitriev, P., Minkina, T., Sushkova, S., Barbashev, A., Dudnikova, T., & Rajput V.D. (2024). Establishment of an in vitro micropropagation protocol for Hibiscus moscheutos L. ‘Berry Awesome’. Horticulturae, 10, 21. https://doi.org/10.3390/horticulturae10010021
  • Vescan, L., Pamfil, D., Clapa, D., Fira, A., & Sisea C. (2012). Efficient micropropagation protocol for highbush blueberry (Vaccinium corymbosum L.) cv. ‘Elliot’. Romanian Biotechnological Letters, 17(1): 6893-6902.
  • Wang, Y., Zhang, X., Jiang, Z., Yang, X., Liu, X., Ou, X., Su, W., & Chen, R. (2023). Establishment and optimization of micropropagation system for southern highbush blueberry. Horticulturae, 9(8), 893. https://doi.org/10.3390/horticulturae9080893
  • Welander, M., Persson, J., Asp, H., & Zhu, L. (2014). Evaluation of a new vessel system based on temporary immersion system for micropropagation. Scientia Horticulturae, 179, 227-232. https://doi.org/10.1016/j.scienta.2014.09.035
  • Wang, Y., Shahid, M. Q., Ghouri, F., Ercişli, S., Baloch, F. S, & Nie, F. (2019) Transcriptome analysis and annotation: SNPs identified from single copy annotated unigenes of three polyploid blueberry crops. PLOS ONE, 14, 4. https://doi.org/10.1371/journal.pone.0216299
  • Welander, M., Sayegh, A., Hagwall, F., Kuznetsova, T., & Holefors, A. (2016). Technical improvement of a new bioreactor for large scale micropropagation of several Vaccinium cultivars Paper presented at the XI International Vaccinium Symposium, Orlando, FL, USA.
  • Yang, H., Wu, Y., Zhang, Ch., Wu, W., Lyu, L., & Li, W. (2022). Growth and physiological characteristics of four blueberry cultivars under different high soil pH treatments. Environmental and Experimental Botany, 197, 104842. https://doi.org/10.1016/j.envexpbot.2022.104842
Year 2024, Volume: 34 Issue: 3, 442 - 451, 30.09.2024
https://doi.org/10.29133/yyutbd.1437017

Abstract

References

  • Adelberg, J., & Toler, J. (2004). Comparison of agar and an agitated, thin-film, liquid system for micropropagation of ornamental elephant ears. HortScience, 39, 1088–1092. https://doi.org/10.21273/HORTSCI.39.5.1088
  • Ahmadian, M., Babaei, A., Shokri, S., & Hessami, S. (2017). Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. Journal of Genetic Engineering and Biotechnology, 15(2), 309-315. https://doi.org/10.1016/j.jgeb.2017.07.005
  • Aka Kaçar, Y., Biçen, B., Şimşek, Ö., Dönmez, D., & Erol, M. H. (2020). Evaluation and comparison of a new type of temporary immersion system tis bioreactors for myrtle (Myrtus communis L.). Applied Ecology and Environmental Research, 18, 1611-1620. https://doi.org/10.15666/aeer/1801_16111620
  • Almusawi, A. H. A., Sayegh, A. J., Alshanaw, A. M. S., & Griffis, J. L. (2017). Plantform bioreactor for mass micropropagation of date palm. Methods in Molecular Biology, 1637, 251-265. https://doi.org/10.1007/978-1-4939-7156-5_21. PMID: 28755351
  • Arigundam, U., Variyath, A. M, Siow, Y. L., Marshall, D., & Debnath, S. C. (2020). Liquid culture for efficient in vitro propagation of adventitious shoots in wild Vaccinium vitis-idaea ssp. minus (lingonberry) using temporary immersion and stationary bioreactors. Scientia Horticulturae, 264, 109199. https://doi.org/10.1016/j.scienta.2020.109199
  • Bello-Bello, J. J, Canto-Flick, A., Balam-Uc, E., Gomez-UC, E., & Robert, M. L. (2010). Improvement of in vitro proliferation and elongation of habanero pepper shoot (Capsicum chinense jacq.) by temporary immersion. HortScience, 45, 1093–1098. https://doi.org/10.21273/HORTSCI.45.7.1093
  • Borsai, O., Hârța, M., Pamfil, D., & Clapa, D. (2019) The effect of cytokinins on micropropagation success of highbush Blueberry (Vaccinium corymbosum L.). Agricultura, 111, 93–100.
  • Bošnjak, D., Marković, M., Agić, D., Vinković, T., Tkalec, M., Ravnjak, B., & Stanisavljević, A. (2021). The Influence of nutrient media modification on the morphological parameters in raspberry (Rubus idaeus L.) micropropagation in the liquid and semi-solid media. Poljoprivreda, 27, 22-29. https://doi.org/10.18047/poljo.27.1.3
  • Clapa, D., Nemeș, S. A., Ranga, F., Hârța, M., Vodnar, D. C., & Câlinoiu, L. F. (2022). Micropropagation of Vaccinium corymbosum L.: an alternative procedure for the production of secondary metabolites. Horticulturae, 8, 480. https://doi.org/10.3390/horticulturae8060480
  • Debnath, S. C. (2007). Influence of indole-3-butyric acid and propagation method on growth and development of in vitro and ex vitro-derived lowbush blueberry plants. Plant Growth Regulation, 51, 245–253. https:// doi.org/10.1007/s10725-006-9164-9
  • Debnath, S. C. (2017). Temporary immersion and stationary bioreactors for mass propagation of true-to-type highbush, half-high, and hybrid blueberries (Vaccinium spp.). The Journal of Horticultural Science and Biotechnology, 92, 72-80. https://doi.org/10.1080/14620316.2016.1224606
  • Etienne, H., & Berthouly, M. (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69, 215–231. https://doi.org/10.1023/A:1015668610465
  • Fan, S., Jian, D., Wei, X., Chen, J., Beeson, R. C., & Zhou, Z. (2017). Micropropagation of Blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in Vitro Shoot Culture. Scientia Horticulture, 226, 277–284. https://doi.org/10.1016/j.scienta.2017.08.052
  • Fira, A., Clapa, D., & Badescu, C. (2008). Aspects regarding the in vitro propagation of highbush blueberry cultivar Blue Crop. Bulletin UASVM, Horticulture, 65(1), 104-109.
  • Gallegos-Cedillo, V. M., Alvaro, J. E., Capatos, T. H., Hachmann, T. L., Carrasco, G., & Urrestarazu, M. (2018). Effect of pH and silicon in the fertigation solution on vegetative growth of blueberry plants in organic agriculture. HortScience, 53(10), 1423-1428. https://doi.org/10.21273/HORTSCI13342-18
  • Gao, H., Li, J., Ji, H., An, L., & Xia, X. (2018). Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp.). Plant Cell, Tissue and Organ Culture, 133, 65–76. https://doi.org/10.1007/s11240-017-1361-x
  • Georgiev, V., Schumann, A., Pavlov, A., & Bley, T. (2014). Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14, 607–621. https://doi.org/10.1002/elsc.201300166
  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
  • Jing, Y., Beleski, D., & Vendrame, W. (2024). Micropropagation and acclimatization of Monstera deliciosa Liebm. ‘Thai Constellation’. Horticulturae, 10, 1. https://doi.org/10.3390/horticulturae10010001
  • Kevers, C., Franck, T., Strasser, R., Dommes, S., & Gaspar, T. (2004). Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell, Tissue and Organ Culture, 77, 181–191. https://doi.org/10.1023/B:TICU.0000016825.18930.e4
  • Le, K-C., Johnson, S., Aidun, C. K., & Egertsdotter, U. (2023). In vitro propagation of the blueberry ‘Blue Suede™’ (Vaccinium hybrid) in semi-solid medium and temporary immersion bioreactors. Plants, 12, 2752. https://doi.org/10.3390/plants12152752
  • Litwinczuk, W., Szczerba, G., & Wrona, D. (2005). Field performance of highbush blueberries (Vaccinium × corymbosum L.) cv. ‘Herbert’ propagated by cuttings and tissue culture. Scientia Horticulturae, 106, 162–169. https:// doi.org/10.1016/j.scienta.2005.02.025
  • Marino, S. R., Williamson, J. G., Olmstead, J. W., & Harmon, P. F. (2014). Vegetative growth of three southern highbush blueberry cultivars obtained from micropropagation and softwood cuttings in two Florida locations. HortScience, 49(5), 556-561. https://doi.org/10.21273/HORTSCI.49.5.556
  • McCown, B. H., & Lloyd, G. (1981). Woody Plant Medium (WPM)—a mineral nutrient formulation for microculture of woody plant species. HortScience, 16, 453.
  • Mengist, M. F., Burtch, H., Debelo, H., Pottorff, M., Bostan, H., Nunn, C., Corbin, S., Kay, D. C., Bassil, N., Hummer, K., Lila, M. A., Ferruzzi, M. G., & Lorizzo, M. (2020). Development of a genetic framework to improve the efficiency of bioactive delivery from blueberry. Scientific Reports, 10(1), 17311. https://doi.org/10.1038/s41598-020-74280-w
  • Murthy, H. N., Joseph, K. S., Paek, K. Y., & Park, S. Y. (2023). Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science, 14, 1159588. https://doi.org/10.3389/fpls.2023.1159588
  • Ostrolucká, M. G., Gajdošová, A., Libiaková, G., Hrubíková, K., & Bežo, M. (2007). Protocol for micropropagation of selected Vaccinium sp. In S. M. Jain & H. Häggman (Eds.), Protocols for Micropropagation of Woody Trees and Fruits (pp. 445-455). Springer, Cham. https://doi.org/10.1007/978-1-4020-6352-7_41
  • Pena-Ramırez, Y., Juarez-Gomez. J., Gomez-Lopez, L., Jeronimo-Perez. J., Garsia-Shesena, I., & Robert, M. L. (2010). Multiple adventitious shoot formationin Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cellular and Developmental Biology Plant, 46, 149–160. https://doi.org/10.1007/s11627-010-9280-0
  • Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in plant tissue culture. Plants, 11, 3313. https://doi.org/10.3390/plants11233313
  • Robert, M., Herrera-Herrera, J., Castillo, E., Ojeda, G., & Herrera-Alamillo, M. A. (2006). An efficient method for the micropropagation of agave species. In V. M. Loyola-Vargas, F. A Vázquez-Flota (Eds.), Plant Cell Culture Protocols (pp. 165-178). Humana, New York. https://doi.org/10.1385/1-59259-959-1:165
  • Robert, M., Herrera-Herrera, J., Herrera-Herrera, G., Herrera-Alamillo, M. A., & Fuentes-Carrillo P. (2006a). A new temporary immersion bioreactor system for micropropagation. In: V. M. Loyola-Vargas, F. A Vázquez-Flota (Eds.), Plant Cell Culture Protocols (pp. 121-129). Humana, New Jersey. https://doi.org/10.1385/1-59259-959-1:121
  • Ruži, D., Vujović, T., Libiaková, G., Cerović, R., Gajdošová, A. (2012). Micropropagation in vitro highbush bluebery (Vaccinium corymbosum L.). Journal of Berry Research, 2, 97-103. https://doi.org/10.3233/JBR-2012-030
  • Sanyürek, K., Çakır, A., & Söylemezoğlu, G. (2021). Optimization of meristem culture to obtain virus-free clonal basic material of grape cultivars. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 617-628. https://doi.org/10.29133/yyutbd.885742
  • Sereda, M., Petrenko, V., Kapralova, O., Chokheli, V., Varduni, T., Dmitriev, P., Minkina, T., Sushkova, S., Barbashev, A., Dudnikova, T., & Rajput V.D. (2024). Establishment of an in vitro micropropagation protocol for Hibiscus moscheutos L. ‘Berry Awesome’. Horticulturae, 10, 21. https://doi.org/10.3390/horticulturae10010021
  • Vescan, L., Pamfil, D., Clapa, D., Fira, A., & Sisea C. (2012). Efficient micropropagation protocol for highbush blueberry (Vaccinium corymbosum L.) cv. ‘Elliot’. Romanian Biotechnological Letters, 17(1): 6893-6902.
  • Wang, Y., Zhang, X., Jiang, Z., Yang, X., Liu, X., Ou, X., Su, W., & Chen, R. (2023). Establishment and optimization of micropropagation system for southern highbush blueberry. Horticulturae, 9(8), 893. https://doi.org/10.3390/horticulturae9080893
  • Welander, M., Persson, J., Asp, H., & Zhu, L. (2014). Evaluation of a new vessel system based on temporary immersion system for micropropagation. Scientia Horticulturae, 179, 227-232. https://doi.org/10.1016/j.scienta.2014.09.035
  • Wang, Y., Shahid, M. Q., Ghouri, F., Ercişli, S., Baloch, F. S, & Nie, F. (2019) Transcriptome analysis and annotation: SNPs identified from single copy annotated unigenes of three polyploid blueberry crops. PLOS ONE, 14, 4. https://doi.org/10.1371/journal.pone.0216299
  • Welander, M., Sayegh, A., Hagwall, F., Kuznetsova, T., & Holefors, A. (2016). Technical improvement of a new bioreactor for large scale micropropagation of several Vaccinium cultivars Paper presented at the XI International Vaccinium Symposium, Orlando, FL, USA.
  • Yang, H., Wu, Y., Zhang, Ch., Wu, W., Lyu, L., & Li, W. (2022). Growth and physiological characteristics of four blueberry cultivars under different high soil pH treatments. Environmental and Experimental Botany, 197, 104842. https://doi.org/10.1016/j.envexpbot.2022.104842
There are 40 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Articles
Authors

Mikhail Sereda 0000-0003-4797-5561

Early Pub Date September 16, 2024
Publication Date September 30, 2024
Submission Date February 14, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024 Volume: 34 Issue: 3

Cite

APA Sereda, M. (2024). Micropropagation of Vaccinium corymbosum L.‘Bluecrop’ in Rocker Temporary Immersion System (TIS) Bioreactor. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(3), 442-451. https://doi.org/10.29133/yyutbd.1437017
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.