Investigation of the Biochemical Content of Some Plant Microgreens From fhe Asteraceae Family
Year 2024,
Volume: 34 Issue: 4, 621 - 628, 31.12.2024
Rüveyde Tunçtürk
,
Muhammed Said Yolcu
,
Murat Tunçtürk
,
Ezelhan Şelem
,
Lütfi Nohutçu
Abstract
Microgreens strengthen the immune system with their intense vitamin, mineral, and antioxidant values; Scientific studies have proven that they are very effective in solving important health problems such as cancer, cardiovascular diseases, and cholesterol. In this study, the changes in photosynthetic pigment, antioxidant capacity, phenolic and flavonoid content, and ascorbic acid (vit C) contents of microgreens of some medicinal plant species (Echinacea purpurea, Calendula officinalis, and Silybum marianum) were investigated. At the same time, the accumulation of Ca, K, Mg, and Na, which have a direct impact on human health, was examined. The trial was designed according to the Randomized Plot Trial Design, in which the growth medium consisting of a mixture of peat, cocopeat, and perlite was used in a fully controlled climate cabin. In the results of working; While the best results in terms of photosynthetic pigment, total antioxidant substance, and flavonoid substance amount were obtained from the echinacea plant, it was determined that the phenolic substance content was higher in the thistle plant and there was no significant difference between the echinacea and thistle plant in terms of ascorbic acid content. In the study, Ca and Mg accumulation was determined to be higher in thistle, K in echinacea, and Na in calendula.
Supporting Institution
This study includes some of the research data carried out by Yüzüncü Yıl University Scientific Research Projects Coordination Unit within the scope of the project titled "Investigation of Biochemical and Mineral Substance Contents of Some Medicinal and Aromatic Plant Microshoots" and numbered FBA-2021-9455.
Project Number
FBA-2021-9455
Thanks
This study includes some of the research data carried out by Yüzüncü Yıl University Scientific Research Projects Coordination Unit within the scope of the project titled "Investigation of Biochemical and Mineral Substance Contents of Some Medicinal and Aromatic Plant Microshoots" and numbered FBA-2021-9455. We thank you.
References
-
Akhzari, D., Kalantari, N., & Mahdavi, S. (2018). Studying the effects of mycorrhiza and vermicompost fertilizers on the growth and physiological traits of Vetiver Grass (Chrysopogon zizanioides L.). Desert, 23(1): 57-62.
-
AOAC, (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemists (AOAC), Arlington, Virginia, USA.
-
Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251-280. https://doi.org/10.3390/molecules16010251.
-
Choe, U., Yu, L., & Wang, T. T. Y. (2018). The science behind microgreens as an exciting new food for the 21th century. Journal of Agricultural and Food Chemistry, 66(44): 11519–11530. https://doi.org/10.1021/ acs.jafc.8b03096.
-
Ghoora, M. D., Haldipur, A. C., & Srividya, N. (2020). Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res., 2, 100046.
-
Ghoora, M. D., Babu, D. R., & Srividya, N. (2020). Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. Journal of Food Composition and Analysis, 91, 103495.
-
Kacar, B., & İnal, A., 2008. Bitki analizleri. Nobel Yayın No: 1271, Fen Bilimleri: 63.
-
Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2), 1710-1738. https://doi.org/10.3390/molecules16021710.
-
Kowitcharoen, L., Phornvillay, S., Lekkham, P., Pongprasert, N., & Srilaong, V. (2021). Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Applied Sciences, 11(17), 7981.
-
Kyriacou, M. C., El-Nakhel, C., Graziani, G., Pannico, A., Soteriou, G. A., Giordano, M., & Rouphael, Y. (2019). Functional quality in novel food sources: Genotypic variation in he nutritive and phytochemical composition of thirteen microgreen species. Food Chemistry, 277, 107-118.
-
Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M., Palladino, M., Ritieni, A., De Pascale, S., & Rouphael, Y. (2020). Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants, 9, 252.
-
Lichtenthaler, H. K. & Welburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans., 11, 591-592.
-
Lutz, M., Jorquera, K., Cancino, B., Ruby, R., & Henriquez, C. (2011). Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. Journal of Food Science, 76, 1088-1093. doi:10.1111/j.1750-3841.2011.02298.x.
-
Obanda, M., Owuor, P. O., & Taylor, S. J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture,74(2), 209-215. doi:10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4.
-
Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A., & Ojha, P. (2019). Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. Journal of Food Science and Technology, 56, 2758-2763. https://doi.org/10.1007/s13197-019-03768-9.
-
Padalia, S., Drabu, S., Raheja, I., Gupta, A., & Dhamija, M. (2010). Multitude potential of wheatgrass juice (Green Blood): an overview. Chron Young Sci, 1, 23-28.
-
Paradiso, V. M., Castellino, M., Renna, M., Gattullo, C. E., Calasso, M., Terzano, R., Allegretta, I., Leoni, B., Caponio, F., & Santamaria, P. (2018). Nutritional characterization and shelf-life of packaged microgreens. Food Funct., 9, 5629–5640.
-
Petropoulos, S. A., El-Nakhel, C., Graziani, G., Kyriacou, M. C., & Rouphael, Y. (2021). The effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens. Horticulturae, 7, 162.
-
Pinto, E., Almeida, A. A., Aguiar, A. A., & Ferreira, I.M. (2015). Comparison between the mineral profile and nitrate content of micro greens and mature lettuces. Journal of Food Composition and Analysis, 37, 38-43.
-
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M., … & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72, 35-40. doi:10.1016/S0378-8741(00)00196-3.
-
Rahimi, A., Siavash Moghaddam, S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., Popović Djordjević, J. (2019) The Influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian cephalaria (Cephalaria Syriaca L.). Agriculture, 9(6), 122-136.
-
Rani, S., Singh, N., Kaur, C., & Varghese, E. (2024). Measurement of phytochemical content and nutritional characteristics of microgreens grown in high altitude region of India. Journal of Food Measurement and Characterization, 1-15. https://doi.org/10.1007/s11694-024-02390-4
-
Taleisnik, E., Peyrano, G., & Arias, C. (1997). Response of Chlorisgayana cultivars to salinity, 1. germination and early vegetative growth, Trop. Grassl, 31, 232-240.
-
Wakeham, P. (2013). The medicinal and pharmacological screening of wheatgrass juice (Triticum aestivum L.): an investigation into chlorophyll content and antimicrobial activity. Plymouth Stud Sci., 6, 20-30.
-
Weber, C. F. (2016). Nutrient content of cabbage and lettuce microgreens grown on vermicompost and hydroponic growing pads. J. Hortic., 3, 1- 5.
-
Weber, C. F. (2017). Broccoli microgreens: A mineral-rich crop that can diversify food systems. Frontiers in Nutrition, 4, 7.
-
Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020) Sprouts vs. Microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their ın vitro bioactive properties. Molecules, 25, 4648.
-
Xiao Z., Lester, G.E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry, 60, 7644- 7651.
-
Xiao, J., & Bai, W. (2019). Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition, 59(6), 827-829.
-
Yadav, L. P., Koley, T. K., Tripathi, A., & Singh, S. (2019). Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agricultural Research, 8(2), 165-175.
Year 2024,
Volume: 34 Issue: 4, 621 - 628, 31.12.2024
Rüveyde Tunçtürk
,
Muhammed Said Yolcu
,
Murat Tunçtürk
,
Ezelhan Şelem
,
Lütfi Nohutçu
Project Number
FBA-2021-9455
References
-
Akhzari, D., Kalantari, N., & Mahdavi, S. (2018). Studying the effects of mycorrhiza and vermicompost fertilizers on the growth and physiological traits of Vetiver Grass (Chrysopogon zizanioides L.). Desert, 23(1): 57-62.
-
AOAC, (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemists (AOAC), Arlington, Virginia, USA.
-
Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251-280. https://doi.org/10.3390/molecules16010251.
-
Choe, U., Yu, L., & Wang, T. T. Y. (2018). The science behind microgreens as an exciting new food for the 21th century. Journal of Agricultural and Food Chemistry, 66(44): 11519–11530. https://doi.org/10.1021/ acs.jafc.8b03096.
-
Ghoora, M. D., Haldipur, A. C., & Srividya, N. (2020). Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res., 2, 100046.
-
Ghoora, M. D., Babu, D. R., & Srividya, N. (2020). Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. Journal of Food Composition and Analysis, 91, 103495.
-
Kacar, B., & İnal, A., 2008. Bitki analizleri. Nobel Yayın No: 1271, Fen Bilimleri: 63.
-
Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2), 1710-1738. https://doi.org/10.3390/molecules16021710.
-
Kowitcharoen, L., Phornvillay, S., Lekkham, P., Pongprasert, N., & Srilaong, V. (2021). Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Applied Sciences, 11(17), 7981.
-
Kyriacou, M. C., El-Nakhel, C., Graziani, G., Pannico, A., Soteriou, G. A., Giordano, M., & Rouphael, Y. (2019). Functional quality in novel food sources: Genotypic variation in he nutritive and phytochemical composition of thirteen microgreen species. Food Chemistry, 277, 107-118.
-
Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M., Palladino, M., Ritieni, A., De Pascale, S., & Rouphael, Y. (2020). Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants, 9, 252.
-
Lichtenthaler, H. K. & Welburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans., 11, 591-592.
-
Lutz, M., Jorquera, K., Cancino, B., Ruby, R., & Henriquez, C. (2011). Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. Journal of Food Science, 76, 1088-1093. doi:10.1111/j.1750-3841.2011.02298.x.
-
Obanda, M., Owuor, P. O., & Taylor, S. J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture,74(2), 209-215. doi:10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4.
-
Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A., & Ojha, P. (2019). Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. Journal of Food Science and Technology, 56, 2758-2763. https://doi.org/10.1007/s13197-019-03768-9.
-
Padalia, S., Drabu, S., Raheja, I., Gupta, A., & Dhamija, M. (2010). Multitude potential of wheatgrass juice (Green Blood): an overview. Chron Young Sci, 1, 23-28.
-
Paradiso, V. M., Castellino, M., Renna, M., Gattullo, C. E., Calasso, M., Terzano, R., Allegretta, I., Leoni, B., Caponio, F., & Santamaria, P. (2018). Nutritional characterization and shelf-life of packaged microgreens. Food Funct., 9, 5629–5640.
-
Petropoulos, S. A., El-Nakhel, C., Graziani, G., Kyriacou, M. C., & Rouphael, Y. (2021). The effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens. Horticulturae, 7, 162.
-
Pinto, E., Almeida, A. A., Aguiar, A. A., & Ferreira, I.M. (2015). Comparison between the mineral profile and nitrate content of micro greens and mature lettuces. Journal of Food Composition and Analysis, 37, 38-43.
-
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M., … & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72, 35-40. doi:10.1016/S0378-8741(00)00196-3.
-
Rahimi, A., Siavash Moghaddam, S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., Popović Djordjević, J. (2019) The Influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian cephalaria (Cephalaria Syriaca L.). Agriculture, 9(6), 122-136.
-
Rani, S., Singh, N., Kaur, C., & Varghese, E. (2024). Measurement of phytochemical content and nutritional characteristics of microgreens grown in high altitude region of India. Journal of Food Measurement and Characterization, 1-15. https://doi.org/10.1007/s11694-024-02390-4
-
Taleisnik, E., Peyrano, G., & Arias, C. (1997). Response of Chlorisgayana cultivars to salinity, 1. germination and early vegetative growth, Trop. Grassl, 31, 232-240.
-
Wakeham, P. (2013). The medicinal and pharmacological screening of wheatgrass juice (Triticum aestivum L.): an investigation into chlorophyll content and antimicrobial activity. Plymouth Stud Sci., 6, 20-30.
-
Weber, C. F. (2016). Nutrient content of cabbage and lettuce microgreens grown on vermicompost and hydroponic growing pads. J. Hortic., 3, 1- 5.
-
Weber, C. F. (2017). Broccoli microgreens: A mineral-rich crop that can diversify food systems. Frontiers in Nutrition, 4, 7.
-
Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020) Sprouts vs. Microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their ın vitro bioactive properties. Molecules, 25, 4648.
-
Xiao Z., Lester, G.E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry, 60, 7644- 7651.
-
Xiao, J., & Bai, W. (2019). Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition, 59(6), 827-829.
-
Yadav, L. P., Koley, T. K., Tripathi, A., & Singh, S. (2019). Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agricultural Research, 8(2), 165-175.