Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 2, 319 - 333, 30.06.2025
https://doi.org/10.29133/yyutbd.1563599

Abstract

References

  • Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1), 038-046.
  • Abbas, E. M., Ali, F. S., Desouky, M. G., Ashour, M., El-Shafei, A., Maaty, M. M., & Sharawy, Z. Z. (2021). Novel comprehensive molecular and ecological study introducing coastal mud shrimp (Solenocera crassicornis) recorded at the Gulf of Suez, Egypt. Journal of Marine Science and Engineering, 9(1), 1-13.
  • Akceylan, E., Bahadir, M., & Yılmaz, M. (2009). Removal efficiency of a calix [4] arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. Journal of Hazardous Materials, 162(2-3), 960-966.
  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40(3-4), 997-1026.
  • Ali, S. S., Al-Tohamy, R., & Sun, J. (2022). Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Science of The Total Environment, 806, 150665.
  • Almroth, B. C., Cartine, J., Jönander, C., Karlsson, M., Langlois, J., Lindström, M., & Sturve, J. (2021). Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior. Ecotoxicology and Environmental Safety, 207, 111523.
  • Alprol, A. E., Ashour, M., Mansour, A. T., Alzahrani, O. M., Mahmoud, S. F., & Gharib, S. M. (2021). Assessment of water quality and phytoplankton structure of eight alexandria beaches, southeastern mediterranean sea, Egypt. Journal of Marine Science and Engineering, 9(12), 1328.
  • Amaral, H. B. F., Reis, R. P., de Oliveira Figueiredo, M. A., & de Gusmão Pedrini, A. (2018). Decadal shifts in macroalgae assemblages in impacted urban lagoons in Brazil. Ecological Indicators, 85, 869-877.
  • Ashour, M., Mabrouk, M. M., Abo-Taleb, H. A., Sharawy, Z. Z., Ayoub, H. F., Van Doan, H., & Goda, A. M. A. (2021). A liquid seaweed extract (TAM®) improves aqueous rearing environment, and diversity of zooplankton community, whilst enhancing growth and immune response of Nile tilapia, Oreochromis niloticus, challenged by Aeromonas hydrophila. Aquaculture, 543, 736915.
  • Bansal, R. C., Donnet, J. B., & Stoeckli, F. (1988). Active carbons. New York: Marcel Dekker.
  • Benítez García, I., Dueñas Ledezma, A. K., Martínez Montaño, E., Salazar Leyva, J. A., Carrera, E., & Osuna Ruiz, I. (2020). Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10(6), 866.
  • Brahmbhatt, N. H., & Jasrai, R. T. (2016). The role of algae in bioremediation of textile effluent. International Journal of Engineering Research and General Science, 4(1), 443-453.
  • Bhuyar, P., Yusoff, M. M., Rahim, M. H. A., Sundararaju, S., Maniam, G. P., & Govindan, N. (2020). Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 671-674.
  • Blaga, A. C., Zaharia, C., & Suteu, D. (2021). Polysaccharides as support for microbial biomass-based adsorbents with applications in removal of heavy metals and dyes. Polymers, 13(17), 2893.
  • Cazetta, A. L., Vargas, A. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117-125.
  • Chandanshive, V., Kadam, S., Rane, N., Jeon, B. H., Jadhav, J., & Govindwar, S. (2020). In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere, 252, 126513.
  • Chequer, F. D., de Oliveira, G. A. R., Ferraz, E. A., Cardoso, J. C., Zanoni, M. B., & de Oliveira, D. P. (2013). Textile dyes: dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing, 6(6), 151-176.
  • Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. Journal of Hazardous Materials, 167(1-3), 1-9.
  • Deniz, F., & Saygideger, S. D. (2011). Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination, 268(1-3), 6-11.
  • Eismann, A. I., Reis, R. P., da Silva, A. F., & Cavalcanti, D. N. (2020). Ulva spp. carotenoids: Responses to environmental conditions. Algal Research, 48, 101916.
  • El Sikaily, A., Khaled, A., Nemr, A. E., & Abdelwahab, O. (2006). Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. Chemistry and Ecology, 22(2), 149-157.
  • El-Sheekh, M. M., Gharieb, M. M., & Abou-El-Souod, G. W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration and Biodegradation, 63(6), 699-704.
  • El Nemr, A., Shoaib, A. G., El Sikaily, A., Mohamed, A. E. D. A., & Hassan, A. F. (2021). Evaluation of cationic methylene blue dye removal by high surface area mesoporous activated carbon derived from Ulva lactuca. Environmental Processes, 8, 311-332.
  • El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124(1-3), 103-110.
  • Eren, E., & Afsin, B. (2008). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces. Dyes and Pigments, 76(1), 220-225.
  • Eren, E., Çubuk, O., Ciftci, H., Eren, B., & Caglar, B. (2010). Adsorption of basic dye from aqueous solutions by modified sepiolite: equilibrium, kinetics and thermodynamics study. Desalination, 252(1-3), 88-96.
  • Farasat, M., Khavari-Nejad, R. A., Nabavi, S. M. B., & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13(1), 163.
  • Freundlich, H. M. F. Z. (1906). Adsorption in solids. Zeitschrift für Physikalische Chemie, 57, 385-470.
  • Gong, R., Ding, Y., Li, M., Yang, C., Liu, H., & Sun, Y. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 64(3), 187-192.
  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology, 39(10), 783-842.
  • Heidarpour, A., Aliasgharzad, N., Khoshmanzar, E., & Lajayer, B. A. (2019). Bio-removal of Zn from contaminated water by using green algae isolates. Environmental Technology and Innovation, 16, 100464.
  • Hidayati, J. R., Yudiati, E., Pringgenies, D., Oktaviyanti, D. T., & Kusuma, A. P. (2020). Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity. In E3S Web of Conferences, 147, 03012. EDP Sciences.
  • Huang, D. J., Hsien-Jung, C., Chun-Der, L. I. N., & Yaw-Huei, L. I. N. (2005). Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Botanical Bulletin of Academia Sinica, 46, 99-106.
  • Ibrahim, W. M., Hassan, A. F., & Azab, Y. A. (2016). Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian Journal of Basic and Applied Sciences, 3(3), 241-249.
  • Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M., & Abdul Khalil, H. P. S,. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43, 102255.
  • Koeman, R. P. T. (1985). The taxonomy of Ulva linnaeus, 1753, and Enteromorpha link, 1820,(Chlorophyceae) in the Netherlands. Drukkerij van Denderen.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221-2295.
  • Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39(9), 1848-1906.
  • Li, H., Budarin, V. L., Clark, J. H., North, M., & Wu, X. (2022). Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. Journal of Hazardous Materials, 436, 129174.
  • Madhusudan, S., & Baskaran, R. (2023). The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. Algal Research, 71, 103069.
  • Makeswari, M., Santhi, T., & Ezhilarasi, M. R. (2016). Adsorption of methylene blue dye by citric acid modified leaves of Ricinus communis from aqueous solutions. Journal of Chemical and Pharmaceutical Research, 8(7), 452-462.
  • Mishra, S., Cheng, L., & Maiti, A. (2021). The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104901.
  • Mourad, F., & El-Azim, A. (2019). Use of green alga Ulva lactuca (L.) as an indicator to heavy metal pollution at intertidal waters in Suez Gulf, Aqaba Gulf and Suez Canal, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 23(4), 437-449.
  • M’sakni, N. H., & Alsufyani, T. (2021). Removal of cationic organic dye from aqueous solution by chemical and pyrolysis activated Ulva lactuca. Water, 13(9), 1154.
  • Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149.
  • Nazem, M. A., Zare, M. H., & Shirazian, S. (2020). Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Advances, 10(3), 1463-1475.
  • Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., & Hellal, A. (2005). Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. Journal of Hazardous Materials, 119(1-3), 189-194.
  • Oladipo, M. A., Bello, I. A., Adeoye, D. O., Abdulsalam, K. A., & Giwa, A. A. (2013). Sorptive removal of dyes from aqueous solution: a review. Advances in Environmental Biology, 7(11), 3311-3327.
  • Olisah, C., Adams, J. B., & Rubidge, G. (2021). The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicology and Environmental Safety, 219, 112316.
  • Ouahabi, S., Daoudi, N. E., Loukili, E. H., Asmae, H., Merzouki, M., Bnouham, M., & Ramdani, M. (2024). Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine Drugs, 22(6), 240.
  • Pappou, S., Dardavila, M. M., Savvidou, M. G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of bioactive compounds from Ulva lactuca. Applied Sciences, 12(4), 2117.
  • Parmar, S., Daki, S., Bhattacharya, S., & Shrivastav, A. (2022). Microorganism: an ecofriendly tool for waste management and environmental safety. In Development in Wastewater Treatment Research and Processes (pp. 175-193). Elsevier.
  • Prakash, D., Singh, B. N., & Upadhyay, G. (2007). Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry, 102(4), 1389-1393.
  • Prasedya, E. S., Martyasari, N. W. R., Apriani, R., Mayshara, S., Fanani, R. A., & Sunarpi, H. (2019). Antioxidant activity of Ulva lactuca L. from different coastal locations of Lombok Island, Indonesia. In AIP Conference Proceedings, 2199(1). AIP Publishing.
  • Pratiwi, D., Prasetyo, D. J., & Poeloengasih, C. D. (2019). Adsorption of methylene blue dye using marine algae Ulva lactuca. In IOP Conference Series: Earth and Environmental Science, 251, 012012. IOP Publishing.
  • Putra, N. R., Fajriah, S., Qomariyah, L., Dewi, A. S., Rizkiyah, D. N., Irianto, I., & Arya, N. N. (2024). Exploring the potential of Ulva lactuca: Emerging extraction methods, bioactive compounds, and health applications-A perspective review. South African Journal of Chemical Engineering, 47(1), 233-245.
  • Qin, Q., Ma, J., & Liu, K. (2009). Adsorption of anionic dyes on ammonium-functionalized MCM-41. Journal of Hazardous Materials, 162(1), 133-139.
  • Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12, 1-12.
  • Safarik, I., Akgül, F., Prochazkova, J., & Akgül, R. (2024). Native and magnetically modified Ulva rigida biomass for dye removal. Biomass Conversion and Biorefinery, 14, 32359–32365 .
  • Saleh, B. (2015). Physiological response of the green algae Ulva lactuca (Chlorophyta) to heavy metals stress. Journal of Stress Physiology and Biochemistry, 11(3), 38-51.
  • Salima, A., Benaouda, B., Noureddine, B., & Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Research, 47(10), 3375-3388.
  • Sardar, M., Manna, M., Maharana, M., & Sen, S. (2021). Remediation of dyes from industrial wastewater using low-cost adsorbents. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water, pp: 377-403.
  • Shobier, A. H., & El Ashry, E. S. H. (2021). Pharmacological applications of the green seaweed Ulva lactuca. Russian Journal of Marine Biology, 47(6), 425-439.
  • Soliman, N. K., Mohamed, H. S., Ahmed, S. A., Sayed, F. H., Elghandour, A. H., & Ahmed, S. A. (2019). Cd2+ and Cu2+ removal by the waste of the marine brown macroalga Hydroclathrus clathratus. Environmental Technology and Innovation, 15, 100365.
  • Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Treatment of special wastewaters in VFCWs. In Vertical Flow Constructed Wetlands, pp: 145-164.
  • Steneck, R. S., & Dethier, M. N. (1994). A functional group approach to the structure of algal-dominated communities. Oikos, 69(3), 476-498.
  • Sultan, H., Ahmed, N., Mubashir, M., & Danish, S. (2020). Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Scientific Reports, 10(1), 595.
  • Tahir, H., Sultan, M., & Jahanzeb, Q. (2008). Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. African Journal of Biotechnology, 7(15), 2649-2655.
  • Tong, T., Liu, Y. J., Zhang, P., & Kang, S. G. (2020). Antioxidant, anti-inflammatory, and α-amylase inhibitory activities of Ulva lactuca extract. Food Science and Preservation, 27(4), 513-521.
  • Tseng, R. L. (2006). Mesopore control of high surface area NaOH-activated carbon. Journal of Colloid and Interface Science, 303(2), 494-502.
  • van Oss, C. J. (1990). A review of: “Active Carbon”. RC Bansal, JB Donnet and F. Stoeckli. Journal of Dispersion Science and Technology, 11(3), 323-323.
  • Wahlström, N., Edlund, U., Pavia, H., Toth, G., Jaworski, A., Pell, A. J., & Richter-Dahlfors, A. (2020). Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose, 27, 3707-3725.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.

Cationic and Anionic Dye Removal of Modified Ulva lactuca L. and Antioxidant Activity

Year 2025, Volume: 35 Issue: 2, 319 - 333, 30.06.2025
https://doi.org/10.29133/yyutbd.1563599

Abstract

This study aimed to investigate the removal of fuchsin and nigrosin synthetic dyes using modified Ulva lactuca L. The study used the adsorption process under laboratory conditions to determine the removal effect of initial dye concentration (25, 50, 100 mg L-1) at different exposure times (60, 90, 120 min), constant temperature (26±1 ºC), biomass dosage (1 g dw) and pH (7–8) values on the dried biosorbent chemically treated with magnesium chloride (MgCI2) and potassium hydroxide (KOH). The research also provides information on changes in some biochemical properties of the biosorbent by exposure to MgCI2 and KOH. The adsorption of the dyes on U. lactuca was modeled with the Langmuir and Freundlich isotherms. The study results determined maximum dye removal for fuchsin (70.81%) and nigrosin (61.29%) dyes at 120 min exposure time and 50 mg L-1 dye concentration onto non-modified U. lactuca biomass. The mean dye removal for fuchsin (60.08%, 99.12%) and nigrosin (56.23%, 54.27%) was obtained on U. lactuca biomass treated with MgCI2 and KOH, respectively. The sample prepared at 60 min contact time and 50 mg L-1 dye concentration had the highest adsorption efficiency for fuchsin on U. lactuca biomass treated with KOH (99.40%). These results demonstrated that the KOH exposure onto Ulva is an efficient, non-polluting, and economical process for eliminating fuchsin from aqueous solutions.

Ethical Statement

There are no ethical issues related to the research. The author also confirmed that the study did not involve any endangered or protected species, any human subjects or animal handling procedures.

Supporting Institution

--

Thanks

--

References

  • Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1), 038-046.
  • Abbas, E. M., Ali, F. S., Desouky, M. G., Ashour, M., El-Shafei, A., Maaty, M. M., & Sharawy, Z. Z. (2021). Novel comprehensive molecular and ecological study introducing coastal mud shrimp (Solenocera crassicornis) recorded at the Gulf of Suez, Egypt. Journal of Marine Science and Engineering, 9(1), 1-13.
  • Akceylan, E., Bahadir, M., & Yılmaz, M. (2009). Removal efficiency of a calix [4] arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. Journal of Hazardous Materials, 162(2-3), 960-966.
  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40(3-4), 997-1026.
  • Ali, S. S., Al-Tohamy, R., & Sun, J. (2022). Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Science of The Total Environment, 806, 150665.
  • Almroth, B. C., Cartine, J., Jönander, C., Karlsson, M., Langlois, J., Lindström, M., & Sturve, J. (2021). Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior. Ecotoxicology and Environmental Safety, 207, 111523.
  • Alprol, A. E., Ashour, M., Mansour, A. T., Alzahrani, O. M., Mahmoud, S. F., & Gharib, S. M. (2021). Assessment of water quality and phytoplankton structure of eight alexandria beaches, southeastern mediterranean sea, Egypt. Journal of Marine Science and Engineering, 9(12), 1328.
  • Amaral, H. B. F., Reis, R. P., de Oliveira Figueiredo, M. A., & de Gusmão Pedrini, A. (2018). Decadal shifts in macroalgae assemblages in impacted urban lagoons in Brazil. Ecological Indicators, 85, 869-877.
  • Ashour, M., Mabrouk, M. M., Abo-Taleb, H. A., Sharawy, Z. Z., Ayoub, H. F., Van Doan, H., & Goda, A. M. A. (2021). A liquid seaweed extract (TAM®) improves aqueous rearing environment, and diversity of zooplankton community, whilst enhancing growth and immune response of Nile tilapia, Oreochromis niloticus, challenged by Aeromonas hydrophila. Aquaculture, 543, 736915.
  • Bansal, R. C., Donnet, J. B., & Stoeckli, F. (1988). Active carbons. New York: Marcel Dekker.
  • Benítez García, I., Dueñas Ledezma, A. K., Martínez Montaño, E., Salazar Leyva, J. A., Carrera, E., & Osuna Ruiz, I. (2020). Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10(6), 866.
  • Brahmbhatt, N. H., & Jasrai, R. T. (2016). The role of algae in bioremediation of textile effluent. International Journal of Engineering Research and General Science, 4(1), 443-453.
  • Bhuyar, P., Yusoff, M. M., Rahim, M. H. A., Sundararaju, S., Maniam, G. P., & Govindan, N. (2020). Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 671-674.
  • Blaga, A. C., Zaharia, C., & Suteu, D. (2021). Polysaccharides as support for microbial biomass-based adsorbents with applications in removal of heavy metals and dyes. Polymers, 13(17), 2893.
  • Cazetta, A. L., Vargas, A. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117-125.
  • Chandanshive, V., Kadam, S., Rane, N., Jeon, B. H., Jadhav, J., & Govindwar, S. (2020). In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere, 252, 126513.
  • Chequer, F. D., de Oliveira, G. A. R., Ferraz, E. A., Cardoso, J. C., Zanoni, M. B., & de Oliveira, D. P. (2013). Textile dyes: dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing, 6(6), 151-176.
  • Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. Journal of Hazardous Materials, 167(1-3), 1-9.
  • Deniz, F., & Saygideger, S. D. (2011). Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination, 268(1-3), 6-11.
  • Eismann, A. I., Reis, R. P., da Silva, A. F., & Cavalcanti, D. N. (2020). Ulva spp. carotenoids: Responses to environmental conditions. Algal Research, 48, 101916.
  • El Sikaily, A., Khaled, A., Nemr, A. E., & Abdelwahab, O. (2006). Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. Chemistry and Ecology, 22(2), 149-157.
  • El-Sheekh, M. M., Gharieb, M. M., & Abou-El-Souod, G. W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration and Biodegradation, 63(6), 699-704.
  • El Nemr, A., Shoaib, A. G., El Sikaily, A., Mohamed, A. E. D. A., & Hassan, A. F. (2021). Evaluation of cationic methylene blue dye removal by high surface area mesoporous activated carbon derived from Ulva lactuca. Environmental Processes, 8, 311-332.
  • El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124(1-3), 103-110.
  • Eren, E., & Afsin, B. (2008). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces. Dyes and Pigments, 76(1), 220-225.
  • Eren, E., Çubuk, O., Ciftci, H., Eren, B., & Caglar, B. (2010). Adsorption of basic dye from aqueous solutions by modified sepiolite: equilibrium, kinetics and thermodynamics study. Desalination, 252(1-3), 88-96.
  • Farasat, M., Khavari-Nejad, R. A., Nabavi, S. M. B., & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13(1), 163.
  • Freundlich, H. M. F. Z. (1906). Adsorption in solids. Zeitschrift für Physikalische Chemie, 57, 385-470.
  • Gong, R., Ding, Y., Li, M., Yang, C., Liu, H., & Sun, Y. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 64(3), 187-192.
  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology, 39(10), 783-842.
  • Heidarpour, A., Aliasgharzad, N., Khoshmanzar, E., & Lajayer, B. A. (2019). Bio-removal of Zn from contaminated water by using green algae isolates. Environmental Technology and Innovation, 16, 100464.
  • Hidayati, J. R., Yudiati, E., Pringgenies, D., Oktaviyanti, D. T., & Kusuma, A. P. (2020). Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity. In E3S Web of Conferences, 147, 03012. EDP Sciences.
  • Huang, D. J., Hsien-Jung, C., Chun-Der, L. I. N., & Yaw-Huei, L. I. N. (2005). Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Botanical Bulletin of Academia Sinica, 46, 99-106.
  • Ibrahim, W. M., Hassan, A. F., & Azab, Y. A. (2016). Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian Journal of Basic and Applied Sciences, 3(3), 241-249.
  • Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M., & Abdul Khalil, H. P. S,. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43, 102255.
  • Koeman, R. P. T. (1985). The taxonomy of Ulva linnaeus, 1753, and Enteromorpha link, 1820,(Chlorophyceae) in the Netherlands. Drukkerij van Denderen.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221-2295.
  • Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39(9), 1848-1906.
  • Li, H., Budarin, V. L., Clark, J. H., North, M., & Wu, X. (2022). Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. Journal of Hazardous Materials, 436, 129174.
  • Madhusudan, S., & Baskaran, R. (2023). The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. Algal Research, 71, 103069.
  • Makeswari, M., Santhi, T., & Ezhilarasi, M. R. (2016). Adsorption of methylene blue dye by citric acid modified leaves of Ricinus communis from aqueous solutions. Journal of Chemical and Pharmaceutical Research, 8(7), 452-462.
  • Mishra, S., Cheng, L., & Maiti, A. (2021). The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104901.
  • Mourad, F., & El-Azim, A. (2019). Use of green alga Ulva lactuca (L.) as an indicator to heavy metal pollution at intertidal waters in Suez Gulf, Aqaba Gulf and Suez Canal, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 23(4), 437-449.
  • M’sakni, N. H., & Alsufyani, T. (2021). Removal of cationic organic dye from aqueous solution by chemical and pyrolysis activated Ulva lactuca. Water, 13(9), 1154.
  • Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149.
  • Nazem, M. A., Zare, M. H., & Shirazian, S. (2020). Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Advances, 10(3), 1463-1475.
  • Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., & Hellal, A. (2005). Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. Journal of Hazardous Materials, 119(1-3), 189-194.
  • Oladipo, M. A., Bello, I. A., Adeoye, D. O., Abdulsalam, K. A., & Giwa, A. A. (2013). Sorptive removal of dyes from aqueous solution: a review. Advances in Environmental Biology, 7(11), 3311-3327.
  • Olisah, C., Adams, J. B., & Rubidge, G. (2021). The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicology and Environmental Safety, 219, 112316.
  • Ouahabi, S., Daoudi, N. E., Loukili, E. H., Asmae, H., Merzouki, M., Bnouham, M., & Ramdani, M. (2024). Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine Drugs, 22(6), 240.
  • Pappou, S., Dardavila, M. M., Savvidou, M. G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of bioactive compounds from Ulva lactuca. Applied Sciences, 12(4), 2117.
  • Parmar, S., Daki, S., Bhattacharya, S., & Shrivastav, A. (2022). Microorganism: an ecofriendly tool for waste management and environmental safety. In Development in Wastewater Treatment Research and Processes (pp. 175-193). Elsevier.
  • Prakash, D., Singh, B. N., & Upadhyay, G. (2007). Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry, 102(4), 1389-1393.
  • Prasedya, E. S., Martyasari, N. W. R., Apriani, R., Mayshara, S., Fanani, R. A., & Sunarpi, H. (2019). Antioxidant activity of Ulva lactuca L. from different coastal locations of Lombok Island, Indonesia. In AIP Conference Proceedings, 2199(1). AIP Publishing.
  • Pratiwi, D., Prasetyo, D. J., & Poeloengasih, C. D. (2019). Adsorption of methylene blue dye using marine algae Ulva lactuca. In IOP Conference Series: Earth and Environmental Science, 251, 012012. IOP Publishing.
  • Putra, N. R., Fajriah, S., Qomariyah, L., Dewi, A. S., Rizkiyah, D. N., Irianto, I., & Arya, N. N. (2024). Exploring the potential of Ulva lactuca: Emerging extraction methods, bioactive compounds, and health applications-A perspective review. South African Journal of Chemical Engineering, 47(1), 233-245.
  • Qin, Q., Ma, J., & Liu, K. (2009). Adsorption of anionic dyes on ammonium-functionalized MCM-41. Journal of Hazardous Materials, 162(1), 133-139.
  • Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12, 1-12.
  • Safarik, I., Akgül, F., Prochazkova, J., & Akgül, R. (2024). Native and magnetically modified Ulva rigida biomass for dye removal. Biomass Conversion and Biorefinery, 14, 32359–32365 .
  • Saleh, B. (2015). Physiological response of the green algae Ulva lactuca (Chlorophyta) to heavy metals stress. Journal of Stress Physiology and Biochemistry, 11(3), 38-51.
  • Salima, A., Benaouda, B., Noureddine, B., & Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Research, 47(10), 3375-3388.
  • Sardar, M., Manna, M., Maharana, M., & Sen, S. (2021). Remediation of dyes from industrial wastewater using low-cost adsorbents. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water, pp: 377-403.
  • Shobier, A. H., & El Ashry, E. S. H. (2021). Pharmacological applications of the green seaweed Ulva lactuca. Russian Journal of Marine Biology, 47(6), 425-439.
  • Soliman, N. K., Mohamed, H. S., Ahmed, S. A., Sayed, F. H., Elghandour, A. H., & Ahmed, S. A. (2019). Cd2+ and Cu2+ removal by the waste of the marine brown macroalga Hydroclathrus clathratus. Environmental Technology and Innovation, 15, 100365.
  • Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Treatment of special wastewaters in VFCWs. In Vertical Flow Constructed Wetlands, pp: 145-164.
  • Steneck, R. S., & Dethier, M. N. (1994). A functional group approach to the structure of algal-dominated communities. Oikos, 69(3), 476-498.
  • Sultan, H., Ahmed, N., Mubashir, M., & Danish, S. (2020). Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Scientific Reports, 10(1), 595.
  • Tahir, H., Sultan, M., & Jahanzeb, Q. (2008). Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. African Journal of Biotechnology, 7(15), 2649-2655.
  • Tong, T., Liu, Y. J., Zhang, P., & Kang, S. G. (2020). Antioxidant, anti-inflammatory, and α-amylase inhibitory activities of Ulva lactuca extract. Food Science and Preservation, 27(4), 513-521.
  • Tseng, R. L. (2006). Mesopore control of high surface area NaOH-activated carbon. Journal of Colloid and Interface Science, 303(2), 494-502.
  • van Oss, C. J. (1990). A review of: “Active Carbon”. RC Bansal, JB Donnet and F. Stoeckli. Journal of Dispersion Science and Technology, 11(3), 323-323.
  • Wahlström, N., Edlund, U., Pavia, H., Toth, G., Jaworski, A., Pell, A. J., & Richter-Dahlfors, A. (2020). Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose, 27, 3707-3725.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
There are 73 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Articles
Authors

Tuğba Şentürk 0000-0002-9882-0079

Mustafa Oskay 0000-0001-8693-5621

Early Pub Date June 20, 2025
Publication Date June 30, 2025
Submission Date October 9, 2024
Acceptance Date March 22, 2025
Published in Issue Year 2025 Volume: 35 Issue: 2

Cite

APA Şentürk, T., & Oskay, M. (2025). Cationic and Anionic Dye Removal of Modified Ulva lactuca L. and Antioxidant Activity. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(2), 319-333. https://doi.org/10.29133/yyutbd.1563599
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.