Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 2, 219 - 230, 30.06.2025
https://doi.org/10.29133/yyutbd.1577319

Abstract

References

  • Acquaah, G. (2015). Conventional plant breeding principles and techniques. In J. M. Al Khayri & et al. (Eds.), Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (Vol. 1, pp. 115–158). Springer International Publishing. https://doi.org/10.1007/978-3-319-22521-0_5
  • Aesomnuk, W., Ruengphayak, S., Ruanjaichon, V., Sreewongchai, T., Malumpong, C., Vanavichit, A., Toojinda, T., Wanchana, S., & Arikit, S. (2021). Estimation of the genetic diversity and population structure of Thailand’s rice landraces using SNP markers. Agronomy, 11(5), 1–14. https://doi.org/10.3390/agronomy11050995
  • Allier, A., Teyssèdre, S., Lehermeier, C., Moreau, L., & Charcosset, A. (2020). Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics, 21(1), 1–16. https://doi.org/10.1186/s12864-020-6756-0
  • Chang, Y. K., Veilleux, R. E., & Iqbal, M. J. (2009). Analysis of genetic variability among Phalaenopsis species and hybrids using amplified fragment length polymorphism. Journal of the American Society for Horticultural Science, 134(1), 58-66
  • Christenson, E. A. (2001). Phalaenopsis: A monograph. Timber Press.
  • Deng, H., Zhang, G. Q., Liu, Z. J., & Wang, Y. (2015). A new species and a new combination of Phalaenopsis (Orchidaceae: Epidendroideae: Aeridinae): Evidence from morphological and DNA analysis. Phytotaxa, 238(3), 243–254. https://doi.org/10.11646/phytotaxa.238.3.3
  • Fatimah, & Sukma, D. (2011). Development of sequence-based microsatellite marker for Phalaenopsis orchid. HAYATI Journal of Biosciences, 18(2), 71–76. https://doi.org/10.4308/hjb.18.2.71
  • Fernández-García, J. L. (2017). Phylogenetics for wildlife conservation. In I. Y. Abdurakhmonov (Ed.), Phylogenetics (pp. 27–46). IntechOpen. https://doi.org/10.5772/intechopen.69240
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015a). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015(1), 431487. https://doi.org/10.1155/2015/431487
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015b). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015, 1–14. https://doi.org/10.1155/2015/431487
  • Hampl, V., Pavlicek, A., & Flegr, J. (2001). Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree : Application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology, 51, 731–735. https://doi.org/10.1099/00207713-51-3-731
  • Hinsley, A., De Boer, H. J., Fay, M. F., Gale, S. W., Gardiner, L. M., Gunasekara, R. S., Kumar, P., Masters, S., Metusala, D., Roberts, D. L., Veldman, S., Wong, S., & Phelps, J. (2018). A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society, 186, 435–455. https://academic.oup.com/botlinnean/article/186/4/435/4736317
  • Hsu, C.-C., Chen, H.-H., & Chen, W.-H. (2018). Phalaenopsis. In J. Van Huylenbroeck (Ed.), Ornamental Crops (pp. 567–625). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-90698-0_23
  • Huang, W., Zhao, X., Zhao, X., Li, Y., & Lian, J. (2016). Effects of environmental factors on genetic diversity of Caragana microphylla in Horqin Sandy Land, northeast China. Ecology and Evolution, 6(22), 8256–8266. https://doi.org/10.1002/ece3.2549
  • Kar, P., Goyal, A. K., Sen, A. (2015). Maturase K gene in plant DNA barcoding and phylogenetics. In Eds: M. A. Ajmal, G. Gábor & F. Al-Hemaid (Eds.), Plant DNA Barcoding and Phylogenetics. Lambert Academic Publishing, Germany.
  • Ko, Y. Z., Shih, H. C., Tsai, C. C., Ho, H. H., Liao, P. C., & Chiang, Y. C. (2017). Screening transferable microsatellite markers across genus Phalaenopsis (Orchidaceae). Botanical Studies, 58(1), 1–9. https://doi.org/10.1186/s40529-017-0200-z
  • Koide, Y., Sakaguchi, S., Uchiyama, T., Ota, Y., Tezuka, A., Nagano, A. J., Ishiguro, S., Takamure, I., & Kishima, Y. (2019). Genetic properties responsible for the transgressive segregation of days to heading in rice. G3: Genes, Genomes, Genetics, 9(5), 1655–1662. https://doi.org/10.1534/g3.119.201011
  • Kovach, W. (2007). MVSP-Multi-Variate Statistical Package (3.1; pp. 1–145). Kovach Computing Services.
  • Kwon, Y. E., Yu, H. J., Baek, S., Kim, G. B., Lim, K. B., & Mun, J. H. (2017). Development of gene-based identification markers for Phalaenopsis ‘KS Little Gem’ based on comparative genome analysis. Horticulture Environment and Biotechnology, 58(2), 162–169. https://doi.org/10.1007/s13580-017-0189-y
  • Liu, Y. C., Lin, B. Y., Lin, J. Y., Wu, W. L., & Chang, C. C. (2016). Evaluation of chloroplast DNA markers for intraspecific identification of Phalaenopsis equestris cultivars. Scientia Horticulturae, 203, 86–94. https://doi.org/10.1016/j.scienta.2016.03.021
  • Lloyd, M. M., Makukhov, A. D., & Pespeni, M. H. (2016). Loss of genetic diversity as a consequence of selection in response to high pCO2. Evolutionary Applications, 9(9), 1124–1132. https://doi.org/10.1111/eva.12404
  • Mursyidin, D. H., Ahyar, G. M. Z., Saputra, A. W., & Hidayat, A. (2021). Genetic diversity and relationships of Phalaenopsis based on the rbcL and trnL-F markers: In silico approach. Biosaintifika: Journal of Biology & Biology Education, 13(2), 212–221. https://doi.org/10.15294/biosaintifika.v13i2.29904
  • Mursyidin, D. H., & Daryono, B. S. (2016). Genetic diversity of local durian (Durio zibethinus Murr.) cultivars of South Kalimantan’s province based on RAPD markers. AIP Conference Proceedings, 1755, 040008-1-040008–7. https://doi.org/10.1063/1.4958483
  • Mursyidin, D. H., Khairullah, I., & Syamsudin, R. (2022a). Genetic diversity and relationship of Indonesian swamp rice (Oryza sativa L.) germplasm based on agro-morphological markers. Agriculture and Natural Resources, 56(1), 95–104. https://doi.org/10.34044/j.anres.2021.56.1.09
  • Mursyidin, D. H., Nazari, Y. A., Badruzsaufari, & Masmitra, M. R. D. (2021). DNA barcoding of the tidal swamp rice (Oryza sativa) landraces from South Kalimantan, Indonesia. Biodiversitas, 22(4), 1593–1599. https://doi.org/10.13057/biodiv/d220401
  • Mursyidin, D. H., Rubiansyah, M., & Badruzsaufari. (2022b). Genetic relationship of several morphological and molecular characteristics of Phalaenopsis amabilis (L.) Blume orchids from the Meratus mountains of South Kalimantan, Indonesia. Indonesian Journal of Forestry Research, 9(1), 63–72. https://doi.org/10.20886/ijfr.2022.9.1.63-72
  • Mursyidin, D. H., Setiawan, D., & Azkia, M. R. (2023). Genetic diversity and its relationship of Dendrobium (Orchidaceae) based on bioactive compounds and their biological activities: A meta-analysis. Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 645–655. https://doi.org/10.29133/YYUTBD.1334411
  • Niknejad, A., Kadir, M. A., Kadzimin, S. B., Abdullah, N. A. P., & Sorkheh, K. (2009). Molecular characterization and phylogenetic relationships among and within species of Phalaenopsis (Epidendroideae: Orchidaceae) based on RAPD analysis. African Journal of Biotechnology, 8(20), 5225–5240. http://www.academicjournals.org/AJB
  • Paradiso, R., & De Pascale, S. (2014). Effects of plant size, temperature, and light intensity on flowering of Phalaenopsis hybrids in Mediterranean greenhouses. Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/420807
  • Rahayu, M. E. Della, Sukma, D., Syukur, M., Aziz, S. A., & Irawati, D. (2015). In vivo polyploid induction using colchicine of moth orchid seedling (Phalaenopsis amabilis (L.) Blume). Buletin Kebun Raya, 18(1), 41–50.
  • Rocha, S. S., Londe, L. C. N., Pimenta, S., Cardoso, M. M., Gonçalves, N. P., Gomes, W. S., & Calaes, J. G. (2020). Congruence between morphological and molecular markers for genetic diversity analysis applied to forage palm genotypes propagated via bioreactors. Industrial Crops and Products, 147, 1–7. https://doi.org/10.1016/j.indcrop.2020.112230
  • Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. PNAS, 118(10), 1–10. https://doi.org/10.1073/pnas.2015096118/-/DCSupplemental
  • Tsai, C.-C. (2011). Molecular Phylogeny and Biogeography of Phalaenopsis Species. In W.-H. Chen & H.-H. Chen (Eds.), Orchid Biotechnology II (pp. 1–24). World Scientific Publishing.
  • Tsai, C. C., Chou, C. H., Wang, H. V., Ko, Y. Z., Chiang, T. Y., & Chiang, Y. C. (2015a). Biogeography of the Phalaenopsis amabilis species complex inferred from nuclear and plastid DNAs. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0560-z
  • Tsai, C. C., Shih, H. C., Wang, H. V., Lin, Y. S., Chang, C. H., Chiang, Y. C., & Chou, C. H. (2015b). RNA-Seq SSRs of moth orchid and screening for molecular markers across genus Phalaenopsis (Orchidaceae). PLoS ONE, 10(11), 1–18. https://doi.org/10.1371/journal.pone.0141761
  • Wu, F., Ma, S., Zhou, J., Han, C., Hu, R., Yang, X., Nie, G., & Zhang, X. (2021). Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ, 9, 1–17. https://doi.org/10.7717/peerj.11325
  • Yusop, M. S. M., Mohamed-Hussein, Z. A., Ramzi, A. B., & Bunawan, H. (2022). Cymbidium mosaic virus infecting orchids: What, how, and what next?. Iranian Journal of Biotechnology, 20(1), e3020. https://doi.org/10.30498/ijb.2021.278382.3020
  • Zahara, M., & Win, C. C. (2019). Morphological and stomatal characteristics of two Indonesian local orchids. Journal of Tropical Horticulture, 2(2), 65. https://doi.org/10.33089/jthort.v2i2.26
  • Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., Huang, W., & Hu, H. (2018). Physiological diversity of orchids. Plant Diversity, 40(4), 196–208. https://doi.org/10.1016/j.pld.2018.06.003.
  • Zhang, Y. J., Li, A., Liu, X. Q., Sun, J. X., Guo, W. J., Zhang, J. W., & Lyu, Y. M. (2019). Changes in the morphology of the bud meristem and the levels of endogenous hormones after low temperature treatment of different Phalaenopsis cultivars. South African Journal of Botany, 125, 499–504. https://doi.org/10.1016/j.sajb.2019.08.016

Genetic Relationships of Native Phalaenopsis Orchids from the South Kalimantan (Borneo), Indonesia: A Morphological and Molecular Approaches

Year 2025, Volume: 35 Issue: 2, 219 - 230, 30.06.2025
https://doi.org/10.29133/yyutbd.1577319

Abstract

Phalaenopsis (Orchidaceae) is the world's most popular and essential ornamental plant. Consequently, it is unsurprising that this orchid has high economic value and is a promising export commodity. Unfortunately, due to monetary value and other factors, like deforestation and habitat destruction, many Phalaenopsis species have suffered losses and are becoming rare in their natural habitat. This study aims to determine the genetic diversity and relationship of Phalaenopsis orchids natively from South Kalimantan, Indonesia, by using flower morphology and DNA polymorphism (RAPD) markers. A total of eight samples of Phalaenopsis were used in this study. The diversity was determined using the Shannon diversity index (H’). In contrast, the clustering and reconstruction of genetic relationships were performed using an unweighted pair group of arithmetic means (UPGMA) and principal component analysis (PCA). Following morphological traits, Phalaenopsis has a high diversity, averaging 0.71. The molecular markers used (RAPD) also show high genetic diversity. In the study, Phalaenopsis showed a genetic polymorphism of 95.46%. The UPGMA revealed the closest relationship of P. cornu-cervi and P. sumatrana at a genetic distance of 0.878 (for morphological markers) and P. deliciosa and P. modesta at 0.715 (for RAPD markers). In contrast, the furthest relationship was shown by P. amabilis with P. sumatrana, both for morphological (at coef. 0.434) and molecular (0.489) markers. Thus, our results are valuable in supporting the conservation and breeding efforts of Phalaenopsis, locally and globally.

References

  • Acquaah, G. (2015). Conventional plant breeding principles and techniques. In J. M. Al Khayri & et al. (Eds.), Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (Vol. 1, pp. 115–158). Springer International Publishing. https://doi.org/10.1007/978-3-319-22521-0_5
  • Aesomnuk, W., Ruengphayak, S., Ruanjaichon, V., Sreewongchai, T., Malumpong, C., Vanavichit, A., Toojinda, T., Wanchana, S., & Arikit, S. (2021). Estimation of the genetic diversity and population structure of Thailand’s rice landraces using SNP markers. Agronomy, 11(5), 1–14. https://doi.org/10.3390/agronomy11050995
  • Allier, A., Teyssèdre, S., Lehermeier, C., Moreau, L., & Charcosset, A. (2020). Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics, 21(1), 1–16. https://doi.org/10.1186/s12864-020-6756-0
  • Chang, Y. K., Veilleux, R. E., & Iqbal, M. J. (2009). Analysis of genetic variability among Phalaenopsis species and hybrids using amplified fragment length polymorphism. Journal of the American Society for Horticultural Science, 134(1), 58-66
  • Christenson, E. A. (2001). Phalaenopsis: A monograph. Timber Press.
  • Deng, H., Zhang, G. Q., Liu, Z. J., & Wang, Y. (2015). A new species and a new combination of Phalaenopsis (Orchidaceae: Epidendroideae: Aeridinae): Evidence from morphological and DNA analysis. Phytotaxa, 238(3), 243–254. https://doi.org/10.11646/phytotaxa.238.3.3
  • Fatimah, & Sukma, D. (2011). Development of sequence-based microsatellite marker for Phalaenopsis orchid. HAYATI Journal of Biosciences, 18(2), 71–76. https://doi.org/10.4308/hjb.18.2.71
  • Fernández-García, J. L. (2017). Phylogenetics for wildlife conservation. In I. Y. Abdurakhmonov (Ed.), Phylogenetics (pp. 27–46). IntechOpen. https://doi.org/10.5772/intechopen.69240
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015a). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015(1), 431487. https://doi.org/10.1155/2015/431487
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015b). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015, 1–14. https://doi.org/10.1155/2015/431487
  • Hampl, V., Pavlicek, A., & Flegr, J. (2001). Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree : Application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology, 51, 731–735. https://doi.org/10.1099/00207713-51-3-731
  • Hinsley, A., De Boer, H. J., Fay, M. F., Gale, S. W., Gardiner, L. M., Gunasekara, R. S., Kumar, P., Masters, S., Metusala, D., Roberts, D. L., Veldman, S., Wong, S., & Phelps, J. (2018). A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society, 186, 435–455. https://academic.oup.com/botlinnean/article/186/4/435/4736317
  • Hsu, C.-C., Chen, H.-H., & Chen, W.-H. (2018). Phalaenopsis. In J. Van Huylenbroeck (Ed.), Ornamental Crops (pp. 567–625). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-90698-0_23
  • Huang, W., Zhao, X., Zhao, X., Li, Y., & Lian, J. (2016). Effects of environmental factors on genetic diversity of Caragana microphylla in Horqin Sandy Land, northeast China. Ecology and Evolution, 6(22), 8256–8266. https://doi.org/10.1002/ece3.2549
  • Kar, P., Goyal, A. K., Sen, A. (2015). Maturase K gene in plant DNA barcoding and phylogenetics. In Eds: M. A. Ajmal, G. Gábor & F. Al-Hemaid (Eds.), Plant DNA Barcoding and Phylogenetics. Lambert Academic Publishing, Germany.
  • Ko, Y. Z., Shih, H. C., Tsai, C. C., Ho, H. H., Liao, P. C., & Chiang, Y. C. (2017). Screening transferable microsatellite markers across genus Phalaenopsis (Orchidaceae). Botanical Studies, 58(1), 1–9. https://doi.org/10.1186/s40529-017-0200-z
  • Koide, Y., Sakaguchi, S., Uchiyama, T., Ota, Y., Tezuka, A., Nagano, A. J., Ishiguro, S., Takamure, I., & Kishima, Y. (2019). Genetic properties responsible for the transgressive segregation of days to heading in rice. G3: Genes, Genomes, Genetics, 9(5), 1655–1662. https://doi.org/10.1534/g3.119.201011
  • Kovach, W. (2007). MVSP-Multi-Variate Statistical Package (3.1; pp. 1–145). Kovach Computing Services.
  • Kwon, Y. E., Yu, H. J., Baek, S., Kim, G. B., Lim, K. B., & Mun, J. H. (2017). Development of gene-based identification markers for Phalaenopsis ‘KS Little Gem’ based on comparative genome analysis. Horticulture Environment and Biotechnology, 58(2), 162–169. https://doi.org/10.1007/s13580-017-0189-y
  • Liu, Y. C., Lin, B. Y., Lin, J. Y., Wu, W. L., & Chang, C. C. (2016). Evaluation of chloroplast DNA markers for intraspecific identification of Phalaenopsis equestris cultivars. Scientia Horticulturae, 203, 86–94. https://doi.org/10.1016/j.scienta.2016.03.021
  • Lloyd, M. M., Makukhov, A. D., & Pespeni, M. H. (2016). Loss of genetic diversity as a consequence of selection in response to high pCO2. Evolutionary Applications, 9(9), 1124–1132. https://doi.org/10.1111/eva.12404
  • Mursyidin, D. H., Ahyar, G. M. Z., Saputra, A. W., & Hidayat, A. (2021). Genetic diversity and relationships of Phalaenopsis based on the rbcL and trnL-F markers: In silico approach. Biosaintifika: Journal of Biology & Biology Education, 13(2), 212–221. https://doi.org/10.15294/biosaintifika.v13i2.29904
  • Mursyidin, D. H., & Daryono, B. S. (2016). Genetic diversity of local durian (Durio zibethinus Murr.) cultivars of South Kalimantan’s province based on RAPD markers. AIP Conference Proceedings, 1755, 040008-1-040008–7. https://doi.org/10.1063/1.4958483
  • Mursyidin, D. H., Khairullah, I., & Syamsudin, R. (2022a). Genetic diversity and relationship of Indonesian swamp rice (Oryza sativa L.) germplasm based on agro-morphological markers. Agriculture and Natural Resources, 56(1), 95–104. https://doi.org/10.34044/j.anres.2021.56.1.09
  • Mursyidin, D. H., Nazari, Y. A., Badruzsaufari, & Masmitra, M. R. D. (2021). DNA barcoding of the tidal swamp rice (Oryza sativa) landraces from South Kalimantan, Indonesia. Biodiversitas, 22(4), 1593–1599. https://doi.org/10.13057/biodiv/d220401
  • Mursyidin, D. H., Rubiansyah, M., & Badruzsaufari. (2022b). Genetic relationship of several morphological and molecular characteristics of Phalaenopsis amabilis (L.) Blume orchids from the Meratus mountains of South Kalimantan, Indonesia. Indonesian Journal of Forestry Research, 9(1), 63–72. https://doi.org/10.20886/ijfr.2022.9.1.63-72
  • Mursyidin, D. H., Setiawan, D., & Azkia, M. R. (2023). Genetic diversity and its relationship of Dendrobium (Orchidaceae) based on bioactive compounds and their biological activities: A meta-analysis. Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 645–655. https://doi.org/10.29133/YYUTBD.1334411
  • Niknejad, A., Kadir, M. A., Kadzimin, S. B., Abdullah, N. A. P., & Sorkheh, K. (2009). Molecular characterization and phylogenetic relationships among and within species of Phalaenopsis (Epidendroideae: Orchidaceae) based on RAPD analysis. African Journal of Biotechnology, 8(20), 5225–5240. http://www.academicjournals.org/AJB
  • Paradiso, R., & De Pascale, S. (2014). Effects of plant size, temperature, and light intensity on flowering of Phalaenopsis hybrids in Mediterranean greenhouses. Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/420807
  • Rahayu, M. E. Della, Sukma, D., Syukur, M., Aziz, S. A., & Irawati, D. (2015). In vivo polyploid induction using colchicine of moth orchid seedling (Phalaenopsis amabilis (L.) Blume). Buletin Kebun Raya, 18(1), 41–50.
  • Rocha, S. S., Londe, L. C. N., Pimenta, S., Cardoso, M. M., Gonçalves, N. P., Gomes, W. S., & Calaes, J. G. (2020). Congruence between morphological and molecular markers for genetic diversity analysis applied to forage palm genotypes propagated via bioreactors. Industrial Crops and Products, 147, 1–7. https://doi.org/10.1016/j.indcrop.2020.112230
  • Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. PNAS, 118(10), 1–10. https://doi.org/10.1073/pnas.2015096118/-/DCSupplemental
  • Tsai, C.-C. (2011). Molecular Phylogeny and Biogeography of Phalaenopsis Species. In W.-H. Chen & H.-H. Chen (Eds.), Orchid Biotechnology II (pp. 1–24). World Scientific Publishing.
  • Tsai, C. C., Chou, C. H., Wang, H. V., Ko, Y. Z., Chiang, T. Y., & Chiang, Y. C. (2015a). Biogeography of the Phalaenopsis amabilis species complex inferred from nuclear and plastid DNAs. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0560-z
  • Tsai, C. C., Shih, H. C., Wang, H. V., Lin, Y. S., Chang, C. H., Chiang, Y. C., & Chou, C. H. (2015b). RNA-Seq SSRs of moth orchid and screening for molecular markers across genus Phalaenopsis (Orchidaceae). PLoS ONE, 10(11), 1–18. https://doi.org/10.1371/journal.pone.0141761
  • Wu, F., Ma, S., Zhou, J., Han, C., Hu, R., Yang, X., Nie, G., & Zhang, X. (2021). Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ, 9, 1–17. https://doi.org/10.7717/peerj.11325
  • Yusop, M. S. M., Mohamed-Hussein, Z. A., Ramzi, A. B., & Bunawan, H. (2022). Cymbidium mosaic virus infecting orchids: What, how, and what next?. Iranian Journal of Biotechnology, 20(1), e3020. https://doi.org/10.30498/ijb.2021.278382.3020
  • Zahara, M., & Win, C. C. (2019). Morphological and stomatal characteristics of two Indonesian local orchids. Journal of Tropical Horticulture, 2(2), 65. https://doi.org/10.33089/jthort.v2i2.26
  • Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., Huang, W., & Hu, H. (2018). Physiological diversity of orchids. Plant Diversity, 40(4), 196–208. https://doi.org/10.1016/j.pld.2018.06.003.
  • Zhang, Y. J., Li, A., Liu, X. Q., Sun, J. X., Guo, W. J., Zhang, J. W., & Lyu, Y. M. (2019). Changes in the morphology of the bud meristem and the levels of endogenous hormones after low temperature treatment of different Phalaenopsis cultivars. South African Journal of Botany, 125, 499–504. https://doi.org/10.1016/j.sajb.2019.08.016
There are 40 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology (Other)
Journal Section Articles
Authors

Dindin Hidayatul Mursyidin 0000-0002-1200-0927

Madyan Akmal Hidayat This is me 0009-0000-2039-6418

Early Pub Date June 20, 2025
Publication Date June 30, 2025
Submission Date November 2, 2024
Acceptance Date April 7, 2025
Published in Issue Year 2025 Volume: 35 Issue: 2

Cite

APA Mursyidin, D. H., & Hidayat, M. A. (2025). Genetic Relationships of Native Phalaenopsis Orchids from the South Kalimantan (Borneo), Indonesia: A Morphological and Molecular Approaches. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(2), 219-230. https://doi.org/10.29133/yyutbd.1577319
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.