Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 2, 334 - 349, 30.06.2025
https://doi.org/10.29133/yyutbd.1601276

Abstract

References

  • Abdulrahman, D. N., & Haleem, R. A. (2023). Morphological and molecular characterization of Neoscytalidium isolates that cause canker and dieback in eucalyptus and chinaberry trees in Iraq. Plant Prot. Sci., 59, 92–105.
  • Aeron, A., Dubey, R. C., & Maheshwari, D. K. (2020). Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch). Can. J. Microbiol., 66(11), 670–677. https://doi. org/10.1139/cjm-2020-0196
  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbial Araes, 163, 173–181. https://doi.org/10.1016/j.micres.2006.04.001
  • Ahmadpour, S. A., Mehrabi-Koushki, M., Farokhinejad, R., & Mirsoleymani, Z. (2023). Characterization and pathogenicity of Neoscytalidium novaehollandiae causing dieback and sooty canker in Iran. Trop. Plant Pathol., 48, 493–507. https://doi.org/10.1007/s40858-023-00591-8
  • Akgül, D. S., Savaş, N. G., & Özarslandan, M. (2019). First report of wood canker caused by Lasiodiplodia exigua and Neoscytalidium novaehollandiae on grapevine in Turkey. Plant Dis., 103(5), 1036–1037. https://doi.org/10.1094/PDIS-11-18-1938-PDN
  • Al Hamad, B. M., Al Raish, S. M., Ramadan, G. A., Saeed, E. E., Alameri, S. S. A., Al Senaani, S. S., AbuQamar, S. F., & El-Tarabily, K. A. (2021). Effectiveness of augmentative biological control of Streptomyces griseorubens UAE2 depends on 1-aminocyclopropane-1-carboxylic acid deaminase activity against Neoscytalidium dimidiatum. J. Fungi, 7, 885. https://doi.org/ 10.3390/jof7110885
  • Albayrak, Ç. B. (2019). Bacillus Species as biocontrol agents for fungal plant pathogens. In M. Islam, M. Rahman, P. Pandey, M. Boehme, & G. Haesaert (Eds.), Bacilli and agrobiotechnology: phytostimulation and biocontrol. Bacilli in climate resilient agriculture and bioprospecting (pp. 239–265). Springer, Cham.. https://doi.org/10.1007/978-3-030-15175-1-13
  • Alkan, M., Özer, G., Koşar, İ., Güney, İ. G., & Derviş, S. (2022). First report of leaf blight of Turkish oregano (Origanum onites) caused by Neoscytalidium dimidiatum in Turkey. J. Plant Pathol., 104, 471. https://doi.org/10.1007/s42161-021-01000-2
  • Al-Saadoon, A. H., Ameen, M. K. M., Hameed, M. A., Al-Badran, A., & Ali, Z. (2012). First report of grapevine dieback caused by Lasiodiplodia theobromae and Neoscytalidium dimidiatum in Basrah, Southern Iraq. Afr. J. Biotechnol., 11(95), 16165–16171.
  • Al-Sadi, A. M., Al-Ghaithi, A. G., Al-Fahdi, N., & Al-Yahyai, R. (2014). Characterization and pathogenicity of fungal pathogens associated with root diseases of citrus in Oman. Int. J. Agric. Biol., 16, 371–376.
  • Al-Tememe, Z. A. M., Lahuf, A., Abdalmoohsin, R. G., & Al-Amirry, A. T. (2019). Occurrence, identification, pathogenicity and control of Neoscytalidium dimidiatum fungus, the causal agent of sooty canker on Eucalyptus camaldulensis in Kerbala Province of Iraq. Plant Arch., 19, 31–38.
  • Arrieta-Guerra, J. J., Díaz-Cabadiaz, A. T., Pérez-Pazos, J. V., Cadena-Torres, J., & Sánchez-López, D. B. (2021). Fungi associated with dry rot disease of yam (Dioscorea rotundata Poir.) tubers in Cordoba, Colombia. Agron. Mesoam., 32, 790–807.
  • Bacon, C. W. & Hinton, D. M. (1996). Symptomless endophytic colonization of maize by Fusarium moniliforme. Can. J. Bot., 74(8), 1195-1202. https://doi.org/10.1139/b96-144
  • Bacon, C. W., & Hill, N. S. (1996). Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In S. C. Redlin & L. M. Carris (Eds), Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution (pp. 155–178). APS Press, St Paul.
  • Bacon, C. W., & Hinton, D. M. (2002). Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control, 23(3), 274–284. https://doi.org/10.1006/bcon.2001.1016
  • Bacon, C. W., & Hinton, D. M. (2007). Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Sci. Technol., 17(1), 81–94. https://doi.org/10.1080/09583150600937006
  • Bacon, C. W., Yates, I. E., Hinton, D. M., & Meredith, F. (2001). Biological control of Fusarium moniliforme in maize. Environ. Health Perspect., 109(2), 325–332. https://doi.org/ 10.1289/ehp.01109s2325
  • Barik, M., Das, C. P. Verma, A. K., Sahoo, S., & Sahoo, N. K. (2021). Metabolic profiling of phenol biodegradation by an indigenous rhodococcus pyridinivorans strain pdb9t n-1 isolated from paper pulp wastewater. Int. Biodeterior. Biodegrad., 158, 105168. https://doi.org/10.1016/j.ibiod.2020.105168
  • Bernardes M. F. F., Pazin M., Pereira L. C., & Dorta D. J. (2015). Impact of pesticides on environmental and human health. In A. C. Andreazza & G. Scola (Eds.), Toxicology Studies—Cells, Drugs and Environment (pp. 195–233). IntechOpen, London, UK.
  • Bódalo, A., Borrego, R, Garrido, C., Bolivar-Anillo, H. J., Cantoral, J. M., Vela-Delgado, M. D., González-Rodríguez, V. E., & Carbú, M. (2023). In Vitro Studies of Endophytic Bacteria Isolated from Ginger (Zingiber officinale) as Potential Plant-Growth-Promoting and Biocontrol Agents against Botrytis cinerea and Colletotrichum acutatum. Plants, 12(23), 4032. https://doi.org/10.3390/plants12234032
  • Bozoğlu, T., Derviş, S., Imren, M., Amer, M., Özdemir, F., Paulitz, T. C., Morgounov, A., Dababat, A. A., & Özer, G. (2022). Fungal pathogens associated with crown and root rot of wheat in Central, Eastern, and SoutheasternKazakhstan. Journal of Fungi, 8(5), 417. https://doi.org/ 10.3390/jof8050417
  • Camele, I., Elshafie, H. S., Caputo, L., Sakr, S. H., & De Feo, V. (2019). Bacillus mojavensis: biofilm formation and biochemical investigation of its bioactive metabolites. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 92(1). https://doi.org/10.4081/jbr.2019.8296Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food Energy Secur., 6, 48–60. https://doi.org/10.1002/fes3.108
  • Carvalho, T. L., Balsemão-Pires, E., Saraiva, R. M., Ferreira, P. C., & Hemerly, A. S. (2014). Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J. Exp. Bot., 65(19), 5631–5642. https://doi.org/10.1093/jxb/eru319
  • Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol., 10, 302. https://doi.org/10.3389/fmicb.2019.00302
  • Chuang, M. F., Ni, H. F., Yang, H. R., Shu, S. L., Lai, S. Y., & Jiang, Y. L. (2012). First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis., 96(6), 906. https://doi.org/10.1094/PDIS-08-11-0689-PDN
  • Compant, S., Cambon, M. C., Vacher, C., Mitter, B., Samad, A., & Sessitsch, A. (2021). The plant endosphere orld Bacterial life within plants. Environ. Microbiol., 23(4),1812–1829. https://doi.org/10.1111/1462-2920.15240
  • Çelikten, M., & Bozkurt, Ġ. A. (2018). Determination of the Effects of Bacteria Isolated from Wheat Root Zone on Wheat Development. Mustafa Kemal University Journal of Agriculture Faculty, 23(1), 33–48..
  • Çiftçi, O., Ozer, G., Türkölmez, S., & Derviş, S. (2023). Lasiodiplodia theobromae and Neoscytalidium dimidiatum associated with grafted walnut (Juglans regia L.) decline in Turkey. Journal of Plant Diseases and Protection, 130 (5), 1117–1128. https://doi.org/10.1007/s41348-023-00745-5
  • Demirbağ, Z., & Demir, İ. (2005). General microbiology laboratory practice book (pp. 126). KTU, Faculty of Arts and Sciences, Department of Biology, Esen Printing, Trabzon
  • Derviş, S., & Özer, G. (2023). Plant-associated Neoscytalidium dimidiatum-Taxonomy, host range, epidemiology, virulence, and management strategies: A comprehensive review. Journal of Fungi, 9 (11), 1048 (1–46). https://doi.org/10.3390/jof9111048
  • Derviş, S., Türkölmez, Ş., Çiftçi, O., Ulubas Serçe, Ç., & Dikilitaş, M. (2019). First report of Neoscytalidium dimidiatum causing canker, shoot blight, and root rot of pistachio in Turkey. Plant Disease, 3(6), 1411. https://doi.org/10.1094/PDIS-01-19-0053-PDN
  • Egamberdieva, D. (2005). Plant-growth-promoting rhizobacteria isolated from a calcisol in a semi-arid region of Uzbekistan: biochemical characterisation and effectiveness. Journal of Plant Nutrition and Soil Science, 168, 94–99. https://doi.org/10.1002/jpln.200321283
  • Egamberdieva, D., Kamilova, F., Validov, S., Gafurova L, Kucharova Z., & Lugtenberg, B. (2008). High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology, 10, 1–9. https://doi.org/10.1111/j.1462-2920.2007.01424.x
  • Esmaeili, N., Mohammadi, H., & Sohrabi, M. (2024). Barberry (Berberis vulgaris L.) as an alternative host of grapevine fungal trunk pathogens. Eur. J. Plant Pathol., 68, 183–197. https://doi.org/10.1007/s10658-023-02743-7
  • Espinoza-Lozano, L., Sumba, M., Calero, A., Jiménez, M. I., & Quito-Avila, D. F. (2023). First report of Neoscytalidium dimidiatum causing stem canker on yellow dragon fruit (Hylocereus megalantus) in Ecuador. Plant Dis., 107(6), 1949. https://doi.org/10.1094/PDIS-06-22-1403-PDN
  • Farr, D. F., Elliott, M., Rossman, A.Y., & Edmonds, R. L. (2005). Fusicoccum arbuti sp. nov. causing cankers on Pacific madrone in western North America with notes on Fusicoccum dimidiatum, the correct name for Scytalidium dimidiatum and Natrassia mangiferae. Mycologia, 97, 730–741.
  • Fira, D., Dimki´c, I., Beri´c, T., Lozo, J., & Stankovi´c, S. (2018). Biological control of plant pathogens by Bacillus species. J. Biotechnol., 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  • French, A. M. (1989). California Plant Disease Host Index; California Department of Food and Agriculture: Sacramento, CA, USA, 394p.
  • Gargouri-Kammoun, L., Gargouri, S., Rezgui, S., Trifi, M., Bahri, N., & Hajlaoui, M. R. (2009). Pathogenicity and aggressiveness of Fusarium and Microdochium on wheat seedlings under controlled conditions. Tunisian Journal of Plant Protection, 59(4), 135–144. https://doi.org/10.24425/jppr.2019.131261
  • Ghazala, I., Chiab, N. Mohamed Najib S., & Gargouri‑Bouzid, R. (2023). The Plant Growth‑Promoting Bacteria Strain Bacillus mojavensis Enhanced Salt Stress Tolerance in Durum Wheat. Current Microbiology, 80, 178. https://doi.org/10.1007/s00284-023-03288-y
  • Gökçe, A.Y., & Kotan, R. (2016). Investigation of biological control possibilities under controlled conditions using PGPR and bioagent bacteria against Bipolaris sorokiniana (Sacc.) causing wheat root rot. Plant Protection Bulletin, 56, 49–75.
  • Güler Güney, İ., Derviş, S., Özer, G., Aktaş, H. & Keske, M. A. (2024). Determination of antagonistic activities of endophytic bacteria isolated from different wheat genotypes Against Fusarium culmorum. International Journal of Agriculture and Wildlife Science, 10(1), 96-116. https://doi.org/10.24180/ijaws.1386741
  • Güney, İ. G., Özer, G., Turan, İ., Koşar, İ., & Derviş, S. (2021). First report of Neoscytalidium dimidiatum causing foliar and stem blight oflavender in Turkey. J. Plant Pathol., 103, 1347–1348. https://doi.org/10.1007/s42161-021-00917-y
  • Güney, I. G., Bozoğlu, T., Özer, G., & Derviş, S. A (2023). A novel blight and root rot of chickpea: A new host for Neoscytalidium dimidiatum. Crop Prot., 172, 106326. https://doi.org/10.1016/j.cropro.2023.106326
  • Güney, I. G., Bozoğlu, T., Özer, G., Türkölmez, Ş., & Derviş, S. (2022). First report of Neoscytalidium dimidiatum associated with dieback and canker of common fig (Ficus carica L.) in Turkey. J. Plant Dis. Prot., 129, 701–705. https://doi.org/10.1007/s41348-022-00586-8
  • Hashemi, H., & Mohammadi, H. (2016). Identification and characterization of fungi associated with internal wood lesions and decline disease of willow and poplar trees in Iran. For. Pathol., 46(4), 341–352. https://doi.org/10.1111/efp.12269
  • Hazarika, S. N., Saikia, K., Borah, A., & Thakur, D. (2021). Prospecting endophytic bacteria endowed with plant growth promoting potential isolated from Camellia sinensis. Front Microbiol 12, 738058. https://doi.org/10.3389/fmicb.2021.738058
  • Hernández, A. F., Gil, F., Lacasaña M., Rodríguez-Barranco, M., Tsatsakis A. M., Requena, M., & Alarcón, R. (2013). Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food Chem. Toxicol., 61, 144–151. https://doi.org/10.1016/j.fct.2013.05.012
  • Holt, G. J., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (1994). In: Bergey's Manual of Determinative Bacteriology. ninth ed. The Williams and Wilkins Pub., M. D., USA. Growth Applied and Environmental Microbiology, 66, 948–955.
  • Ismail, S. I., Ahmad Dahlan, K., Abdullah, S., & Zulperi, D. (2021). First Report of Neoscytalidium dimidiatum causing fruit rot on guava (Psidium guajava L.) in Malaysia. Plant Dis., 105, 220.
  • Izumi, H. (2011). Diversity of endophytic bacteria in forest trees. In Pirttila, A. M., Frank, A. C. (Eds) Endophyte of forest trees: Biology and application. Forestry Sciences, (pp. 95–105). Finland. https://doi.org/10.1007/978-94-007-1599-8_6Jaber, L. R. (2018). Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta, 248, 1525–1535. https://doi.org/10.1007/s00425-018-2991-x
  • Jasim, B., Sreelakshmi, S., Mathew, J., & Radhakrishnan, E. K. (2016) Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech 6(2), 187. https://doi.org/10.1007/s13205-016-0508-5
  • Ji, P., & Wilson, M. (2002). Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in bilogical control of bacterial speck of tomato. Applied and Environmental Microbiology, 68, 4383–4389. https://doi.org/10.1128/AEM.68.9.4383-4389.2002
  • Khoo, Y. W., Tan, H. T., Khaw, Y. S., Li, S. F., & Chong, K. P. (2023). First report of Neoscytalidium dimidiatum causing stem canker on Selenicereus megalanthus in Malaysia. Plant Dis., 107, 222. https://doi.org/10.1094/PDIS-03-22-0566-PDN
  • Li, A., Hu, T., Luo, H., Alam, N. U., Xin, J., Li, H., Lin, Y., Huang, J., Huang, K., & Meng, Y., et al. (2019). A carotenoid- and poly-β-hydroxybutyrate-free mutant strain of sphingomonas elodea atcc 31461 for the commercial production of gellan. mSphere, 4(5), 10–1128. https://doi.org/10.1128/mSphere.00668-19
  • Logan, N. A., & De Vos, P. (2009). Genus I. Bacillus Cohn 1872, 174AL. In De Vos, P., Garity, M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H. and Whitman, W. B. (Eds), Bergey’s manual of sysematic bacteriology (2nd Ed.) (pp. 21–128). Springer, New York.Mayorquin, J. S., Wang, D. H., Twizeyimana, M., & Eskalen, A. (2016). Identification, distribution, and pathogenicity of Diatrypaceae and Botryosphaeriaceae associated with citrus branch canker in the Southern California desert. Plant Dis., 100(12), 2402–2413. https://doi.org/10.1094/PDIS-03-16-0362-RE
  • Mello, J. F., Brito, A. C. Q., Motta, C. M. S., Vieira, J. C. B., Michereff, S. J., & Machado, A. R. (2019). First report of Neoscytalidium dimidiatum causing root rot in sweet potato in Brazil. Plant Dis., 103, 373. https://doi.org/10.1094/PDIS-07-18-1242-PDN
  • Mishra M., Kumar, U., Mishra, P. K., & Prakash. V. (2010). The efficiency of plant growth-promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv. Biol. Res., 4(2), 92–96.
  • Monteles, R. P., Sousa, E. S., da Silva Matos, K., de Brito, V. S. T., de Melo, M. P., & Beserra, J. E. A. (2020). Neoscytalidium dimidiatum causes leaf blight on Sansevieria trifasciata in Brazil. Australas. Plant Dis. Notes, 15(1), 19. https://doi.org/10.1007/s13314-020-00389-6
  • Nouri, M. T., Lawrence, D. P., Yaghmour, M. A., Michailides, T. J., & Trouillas, F. P. (2018). Neoscytalidium dimidiatum causing canker, shoot blight and fruit rot of almond in California. Plant Dis., 102, 1638–1647. https://doi.org/10.1094/PDIS-12-17-1967-RE
  • Oksal, E., Çelik, Y., & Özer, G. (2019). Neoscytalidium dimidiatum causes canker and dieback on grapevine in Turkey. Australas. Plant Dis. Notes, 14, 33. https://doi.org/10.1007/s13314-019-0363-4
  • Oksal, E., Yigit, T., & Özer, G. (2020). First report of Neoscytalidium dimidiatum causing shoot blight, dieback and canker of apricot in Turkey. J. Plant Pathol., 102, 579–580. https://doi.org/10.1007/s42161-019-00467-4
  • Öksel, C., Balkan, A., Bilgin, O., & Mirik, M., et al. (2022). Investigation of The Effect of PGPR on Yield And Some Yield Components In Winter Wheat (Triticum aestivum L.). Turkish Journal Of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019160
  • Özer, G., Günen, T. U., Koşar, İ., Güler, İ. G., & Derviş, S. (2022). First report of Neoscytalidium dimidiatum causing blight of Melissa officinalis in Turkey. J. Plant Dis. Prot., 129, 197–199. https://doi.org/10.1007/s41348-021-00522-2
  • Pan, D., Mionetto, A., Tiscornia, S., & Bettucci, L. (2015). Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res., 31, 137–143. https://doi.org/10.1007/s12550-015-0224-8
  • Patel, J. K., Mistry, Y., Soni, R., & Jha, A. (2024). Evaluation of Antifungal Activity of Endophytic Bacillus spp. and Identification of Secondary Metabolites Produced Against the Phytopathogenic Fungi. Curr. Microbiol., 81(5), 128. https://doi.org/10.1007/s00284-024-03652-6
  • Polizzi, G., Aiello, D., Vitale, A., Giuffrida, F., Groenewald, J. Z., & Crous, P. W. (2009). First Report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Dis., 93, 1215. https://doi.org/10.1094/PDIS-93-11-1215A
  • Rolshausen, P. E., Akgul, D. S., Perez, R., Eskalen, A., & Gispert, C. (2013). First report of wood canker caused by Neoscytalidium dimidiatum on grapevine in California. Plant Dis., 97(11), 1511. https://doi.org/10.1094/PDIS-04-13-0451-PDN
  • Roy, M., Chatterjee, S., & Dangar, T. K. (2021). Characterization and mosquitocidal potency of a Bacillus thuringiensis strain of rice field soil of Burdwan, West Bengal, India. Microb. Pathog. 158, 105093. doi: 10.1016/j.micpath.2021.105093
  • Salunkhe, V. N., Bhagat, Y. S., Chavan, S. B., Lonkar, S.G., & Kakade, V. D. (2023). First report of Neoscytalidium dimidiatum causing stem canker of dragon fruit (Hylocereus spp.) in India. Plant Dis., 107, 1222. https://doi.org/10.1094/PDIS-04-22-0909-PDN
  • Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiol. Res., 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
  • Sari, E., Etebarian, H. R., Roustaei, A., & Aminian, H. (2006). Biological control of Gaeumannomyces graminis on wheat with Bacillus spp. Plant Pathol. J., 5, 307–314. https://doi.org/10.3923/ppj.2006.307.314
  • Sha, S., Wang, Z., Hao, H., Wang, L., & Feng, H. (2022). First report of Neoscytalidium dimidiatum inducing canker disease on apple trees in China. J. Plant Pathol., 104(1), 1149–1150. https://doi.org/10.1007/s42161-022-01131-0
  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950
  • Simons M., van der Bij A. J., Brand I., de Weger L. A., Wijffelman C. A., & Lugtenberg B. (1996). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant Microbe Interact. 9, 600–607. 10.1094/MPMI-9-0600
  • Singh, M., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: A new source of bioactive compounds. 3 Biotech., 7(5), 315. https://doi.org/10.1007/s13205-017-0942-z
  • Singh, V. K., Shukla, A. K., & Singh, A. K. (2024). Endophytic Bacillus species as multifaceted toolbox for agriculture, environment, and medicine. Environ. Dev. Sustain. 2024, 1-40. https://doi.org/10.1007/s10668-024-05706-y
  • Snook, M. E., Mitchell, T., Hinton, D. M., & Bacon, C. W. (2009). Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J. Agric. Food Chem., 57(10), 4287–4292. https://doi.org/10.1021/jf900 164h
  • Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health, 18, 1112.
  • TURKSTAT (2023). Turkish Statistical Institute, Agricultural Istatistics, Ankara. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. [Access date: 19.12.2024]
  • Türkölmez, ¸S., Dervis, S., Çiftçi, O., & Dikilitas, M. (2019a). First report of Neoscytalidium dimidiatum causing shoot and needle blight of pines (Pinus spp.) in Turkey. Plant Dis., 103(11), 2960–2961. https://doi.org/10.1094/PDIS-05-19-0964-PDN
  • Türkölmez, S., Derviş, S., Çiftçi, O., Ulubaş Serçe, Ç., Türkölmez, C. G., & Dikilitas, M. (2019b). First report of Neoscytalidium dimidiatum causing dieback, shoot blight, and branch canker of willow trees in Turkey. Plant Dis., 103(6), 2139. https://doi.org/10.1094/PDIS-01-19-0053-PDN
  • Wang, S., Liu, J., Li, C., & Chung, B. M. (2019). Efficiency of Nannochloropsis oculata and Bacillus polymyxa symbiotic composite at ammonium and phosphate removal from synthetic wastewater. Environ. Technol. 40, 2494–2503. https://doi.org/10.1080/09593330.2018.1444103
  • Xiao, L., Xie, C. C., Cai, J., Lin, Z. J., & Chen, Y. H. (2009). Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr. Microbiol., 58(5), 528–533. https://doi.org/10.1007/ s00284-009-9363-5
  • Zvyagintsev, D. G. (1991). Methods for Soil Microbiology and Biochemistry. Moscow State University, Moscow. (303 p.) In Russian.

Antifungal Activity of Endophytic Bacillus spp. Bacteria and Its Effect on Root and Coleoptile Length during Germination Period

Year 2025, Volume: 35 Issue: 2, 334 - 349, 30.06.2025
https://doi.org/10.29133/yyutbd.1601276

Abstract

In this study, endophytic bacteria were isolated from roots and crowns of rosemary (Rosmarinus officinalis L.), olive (Olea europaea L.), and loquat (Eriobotrya japonica L.) plant samples. The morphological and physiological properties of nine isolated endophytic bacteria were determined. All isolates were identified as Gram-positive, oxidase-positive and catalase-positive. Amylase, cellulase, and carbohydrate tests gave positive results. Antagonistic activities of the isolates against fungal pathogens varied between 85.7% and 52.9% against Fusarium culmorum and between 86.0% and 65.1% against Neoscytalidium dimidiatum. BMBA2 isolate gave the best results both in Petri dish antagonistic activity and in wheat seed germination in terms of root length and coleoptile length. BMBA2 isolates gave the best results with a coleoptile length of 7.58 cm and root length of 8.33 cm. In wheat seeds treated with F. culmorum and bacteria, the BMBA2 isolate gave the best result with a coleoptile length of 6.98 and a root length of 7.30 cm. For the identification of bacteria, in vitro BiBA1 and ND3BA were determined as Bacillus amyloliquefaciens subsp. plantarum; BiBA2 and YDBA as Bacillus subtilis; NDBA, ND2BA, BMBA1, BMBA2, and BMBA3 as Bacillus mojavensis. Since this is the first study to use endophytic Bacillus mojavensis as a biological agent against F. culmorum and N. dimidiatum pathogens, the results obtained from this study are thought to be important and promising in terms of application.

References

  • Abdulrahman, D. N., & Haleem, R. A. (2023). Morphological and molecular characterization of Neoscytalidium isolates that cause canker and dieback in eucalyptus and chinaberry trees in Iraq. Plant Prot. Sci., 59, 92–105.
  • Aeron, A., Dubey, R. C., & Maheshwari, D. K. (2020). Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch). Can. J. Microbiol., 66(11), 670–677. https://doi. org/10.1139/cjm-2020-0196
  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbial Araes, 163, 173–181. https://doi.org/10.1016/j.micres.2006.04.001
  • Ahmadpour, S. A., Mehrabi-Koushki, M., Farokhinejad, R., & Mirsoleymani, Z. (2023). Characterization and pathogenicity of Neoscytalidium novaehollandiae causing dieback and sooty canker in Iran. Trop. Plant Pathol., 48, 493–507. https://doi.org/10.1007/s40858-023-00591-8
  • Akgül, D. S., Savaş, N. G., & Özarslandan, M. (2019). First report of wood canker caused by Lasiodiplodia exigua and Neoscytalidium novaehollandiae on grapevine in Turkey. Plant Dis., 103(5), 1036–1037. https://doi.org/10.1094/PDIS-11-18-1938-PDN
  • Al Hamad, B. M., Al Raish, S. M., Ramadan, G. A., Saeed, E. E., Alameri, S. S. A., Al Senaani, S. S., AbuQamar, S. F., & El-Tarabily, K. A. (2021). Effectiveness of augmentative biological control of Streptomyces griseorubens UAE2 depends on 1-aminocyclopropane-1-carboxylic acid deaminase activity against Neoscytalidium dimidiatum. J. Fungi, 7, 885. https://doi.org/ 10.3390/jof7110885
  • Albayrak, Ç. B. (2019). Bacillus Species as biocontrol agents for fungal plant pathogens. In M. Islam, M. Rahman, P. Pandey, M. Boehme, & G. Haesaert (Eds.), Bacilli and agrobiotechnology: phytostimulation and biocontrol. Bacilli in climate resilient agriculture and bioprospecting (pp. 239–265). Springer, Cham.. https://doi.org/10.1007/978-3-030-15175-1-13
  • Alkan, M., Özer, G., Koşar, İ., Güney, İ. G., & Derviş, S. (2022). First report of leaf blight of Turkish oregano (Origanum onites) caused by Neoscytalidium dimidiatum in Turkey. J. Plant Pathol., 104, 471. https://doi.org/10.1007/s42161-021-01000-2
  • Al-Saadoon, A. H., Ameen, M. K. M., Hameed, M. A., Al-Badran, A., & Ali, Z. (2012). First report of grapevine dieback caused by Lasiodiplodia theobromae and Neoscytalidium dimidiatum in Basrah, Southern Iraq. Afr. J. Biotechnol., 11(95), 16165–16171.
  • Al-Sadi, A. M., Al-Ghaithi, A. G., Al-Fahdi, N., & Al-Yahyai, R. (2014). Characterization and pathogenicity of fungal pathogens associated with root diseases of citrus in Oman. Int. J. Agric. Biol., 16, 371–376.
  • Al-Tememe, Z. A. M., Lahuf, A., Abdalmoohsin, R. G., & Al-Amirry, A. T. (2019). Occurrence, identification, pathogenicity and control of Neoscytalidium dimidiatum fungus, the causal agent of sooty canker on Eucalyptus camaldulensis in Kerbala Province of Iraq. Plant Arch., 19, 31–38.
  • Arrieta-Guerra, J. J., Díaz-Cabadiaz, A. T., Pérez-Pazos, J. V., Cadena-Torres, J., & Sánchez-López, D. B. (2021). Fungi associated with dry rot disease of yam (Dioscorea rotundata Poir.) tubers in Cordoba, Colombia. Agron. Mesoam., 32, 790–807.
  • Bacon, C. W. & Hinton, D. M. (1996). Symptomless endophytic colonization of maize by Fusarium moniliforme. Can. J. Bot., 74(8), 1195-1202. https://doi.org/10.1139/b96-144
  • Bacon, C. W., & Hill, N. S. (1996). Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In S. C. Redlin & L. M. Carris (Eds), Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution (pp. 155–178). APS Press, St Paul.
  • Bacon, C. W., & Hinton, D. M. (2002). Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control, 23(3), 274–284. https://doi.org/10.1006/bcon.2001.1016
  • Bacon, C. W., & Hinton, D. M. (2007). Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Sci. Technol., 17(1), 81–94. https://doi.org/10.1080/09583150600937006
  • Bacon, C. W., Yates, I. E., Hinton, D. M., & Meredith, F. (2001). Biological control of Fusarium moniliforme in maize. Environ. Health Perspect., 109(2), 325–332. https://doi.org/ 10.1289/ehp.01109s2325
  • Barik, M., Das, C. P. Verma, A. K., Sahoo, S., & Sahoo, N. K. (2021). Metabolic profiling of phenol biodegradation by an indigenous rhodococcus pyridinivorans strain pdb9t n-1 isolated from paper pulp wastewater. Int. Biodeterior. Biodegrad., 158, 105168. https://doi.org/10.1016/j.ibiod.2020.105168
  • Bernardes M. F. F., Pazin M., Pereira L. C., & Dorta D. J. (2015). Impact of pesticides on environmental and human health. In A. C. Andreazza & G. Scola (Eds.), Toxicology Studies—Cells, Drugs and Environment (pp. 195–233). IntechOpen, London, UK.
  • Bódalo, A., Borrego, R, Garrido, C., Bolivar-Anillo, H. J., Cantoral, J. M., Vela-Delgado, M. D., González-Rodríguez, V. E., & Carbú, M. (2023). In Vitro Studies of Endophytic Bacteria Isolated from Ginger (Zingiber officinale) as Potential Plant-Growth-Promoting and Biocontrol Agents against Botrytis cinerea and Colletotrichum acutatum. Plants, 12(23), 4032. https://doi.org/10.3390/plants12234032
  • Bozoğlu, T., Derviş, S., Imren, M., Amer, M., Özdemir, F., Paulitz, T. C., Morgounov, A., Dababat, A. A., & Özer, G. (2022). Fungal pathogens associated with crown and root rot of wheat in Central, Eastern, and SoutheasternKazakhstan. Journal of Fungi, 8(5), 417. https://doi.org/ 10.3390/jof8050417
  • Camele, I., Elshafie, H. S., Caputo, L., Sakr, S. H., & De Feo, V. (2019). Bacillus mojavensis: biofilm formation and biochemical investigation of its bioactive metabolites. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 92(1). https://doi.org/10.4081/jbr.2019.8296Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food Energy Secur., 6, 48–60. https://doi.org/10.1002/fes3.108
  • Carvalho, T. L., Balsemão-Pires, E., Saraiva, R. M., Ferreira, P. C., & Hemerly, A. S. (2014). Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J. Exp. Bot., 65(19), 5631–5642. https://doi.org/10.1093/jxb/eru319
  • Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol., 10, 302. https://doi.org/10.3389/fmicb.2019.00302
  • Chuang, M. F., Ni, H. F., Yang, H. R., Shu, S. L., Lai, S. Y., & Jiang, Y. L. (2012). First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis., 96(6), 906. https://doi.org/10.1094/PDIS-08-11-0689-PDN
  • Compant, S., Cambon, M. C., Vacher, C., Mitter, B., Samad, A., & Sessitsch, A. (2021). The plant endosphere orld Bacterial life within plants. Environ. Microbiol., 23(4),1812–1829. https://doi.org/10.1111/1462-2920.15240
  • Çelikten, M., & Bozkurt, Ġ. A. (2018). Determination of the Effects of Bacteria Isolated from Wheat Root Zone on Wheat Development. Mustafa Kemal University Journal of Agriculture Faculty, 23(1), 33–48..
  • Çiftçi, O., Ozer, G., Türkölmez, S., & Derviş, S. (2023). Lasiodiplodia theobromae and Neoscytalidium dimidiatum associated with grafted walnut (Juglans regia L.) decline in Turkey. Journal of Plant Diseases and Protection, 130 (5), 1117–1128. https://doi.org/10.1007/s41348-023-00745-5
  • Demirbağ, Z., & Demir, İ. (2005). General microbiology laboratory practice book (pp. 126). KTU, Faculty of Arts and Sciences, Department of Biology, Esen Printing, Trabzon
  • Derviş, S., & Özer, G. (2023). Plant-associated Neoscytalidium dimidiatum-Taxonomy, host range, epidemiology, virulence, and management strategies: A comprehensive review. Journal of Fungi, 9 (11), 1048 (1–46). https://doi.org/10.3390/jof9111048
  • Derviş, S., Türkölmez, Ş., Çiftçi, O., Ulubas Serçe, Ç., & Dikilitaş, M. (2019). First report of Neoscytalidium dimidiatum causing canker, shoot blight, and root rot of pistachio in Turkey. Plant Disease, 3(6), 1411. https://doi.org/10.1094/PDIS-01-19-0053-PDN
  • Egamberdieva, D. (2005). Plant-growth-promoting rhizobacteria isolated from a calcisol in a semi-arid region of Uzbekistan: biochemical characterisation and effectiveness. Journal of Plant Nutrition and Soil Science, 168, 94–99. https://doi.org/10.1002/jpln.200321283
  • Egamberdieva, D., Kamilova, F., Validov, S., Gafurova L, Kucharova Z., & Lugtenberg, B. (2008). High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology, 10, 1–9. https://doi.org/10.1111/j.1462-2920.2007.01424.x
  • Esmaeili, N., Mohammadi, H., & Sohrabi, M. (2024). Barberry (Berberis vulgaris L.) as an alternative host of grapevine fungal trunk pathogens. Eur. J. Plant Pathol., 68, 183–197. https://doi.org/10.1007/s10658-023-02743-7
  • Espinoza-Lozano, L., Sumba, M., Calero, A., Jiménez, M. I., & Quito-Avila, D. F. (2023). First report of Neoscytalidium dimidiatum causing stem canker on yellow dragon fruit (Hylocereus megalantus) in Ecuador. Plant Dis., 107(6), 1949. https://doi.org/10.1094/PDIS-06-22-1403-PDN
  • Farr, D. F., Elliott, M., Rossman, A.Y., & Edmonds, R. L. (2005). Fusicoccum arbuti sp. nov. causing cankers on Pacific madrone in western North America with notes on Fusicoccum dimidiatum, the correct name for Scytalidium dimidiatum and Natrassia mangiferae. Mycologia, 97, 730–741.
  • Fira, D., Dimki´c, I., Beri´c, T., Lozo, J., & Stankovi´c, S. (2018). Biological control of plant pathogens by Bacillus species. J. Biotechnol., 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  • French, A. M. (1989). California Plant Disease Host Index; California Department of Food and Agriculture: Sacramento, CA, USA, 394p.
  • Gargouri-Kammoun, L., Gargouri, S., Rezgui, S., Trifi, M., Bahri, N., & Hajlaoui, M. R. (2009). Pathogenicity and aggressiveness of Fusarium and Microdochium on wheat seedlings under controlled conditions. Tunisian Journal of Plant Protection, 59(4), 135–144. https://doi.org/10.24425/jppr.2019.131261
  • Ghazala, I., Chiab, N. Mohamed Najib S., & Gargouri‑Bouzid, R. (2023). The Plant Growth‑Promoting Bacteria Strain Bacillus mojavensis Enhanced Salt Stress Tolerance in Durum Wheat. Current Microbiology, 80, 178. https://doi.org/10.1007/s00284-023-03288-y
  • Gökçe, A.Y., & Kotan, R. (2016). Investigation of biological control possibilities under controlled conditions using PGPR and bioagent bacteria against Bipolaris sorokiniana (Sacc.) causing wheat root rot. Plant Protection Bulletin, 56, 49–75.
  • Güler Güney, İ., Derviş, S., Özer, G., Aktaş, H. & Keske, M. A. (2024). Determination of antagonistic activities of endophytic bacteria isolated from different wheat genotypes Against Fusarium culmorum. International Journal of Agriculture and Wildlife Science, 10(1), 96-116. https://doi.org/10.24180/ijaws.1386741
  • Güney, İ. G., Özer, G., Turan, İ., Koşar, İ., & Derviş, S. (2021). First report of Neoscytalidium dimidiatum causing foliar and stem blight oflavender in Turkey. J. Plant Pathol., 103, 1347–1348. https://doi.org/10.1007/s42161-021-00917-y
  • Güney, I. G., Bozoğlu, T., Özer, G., & Derviş, S. A (2023). A novel blight and root rot of chickpea: A new host for Neoscytalidium dimidiatum. Crop Prot., 172, 106326. https://doi.org/10.1016/j.cropro.2023.106326
  • Güney, I. G., Bozoğlu, T., Özer, G., Türkölmez, Ş., & Derviş, S. (2022). First report of Neoscytalidium dimidiatum associated with dieback and canker of common fig (Ficus carica L.) in Turkey. J. Plant Dis. Prot., 129, 701–705. https://doi.org/10.1007/s41348-022-00586-8
  • Hashemi, H., & Mohammadi, H. (2016). Identification and characterization of fungi associated with internal wood lesions and decline disease of willow and poplar trees in Iran. For. Pathol., 46(4), 341–352. https://doi.org/10.1111/efp.12269
  • Hazarika, S. N., Saikia, K., Borah, A., & Thakur, D. (2021). Prospecting endophytic bacteria endowed with plant growth promoting potential isolated from Camellia sinensis. Front Microbiol 12, 738058. https://doi.org/10.3389/fmicb.2021.738058
  • Hernández, A. F., Gil, F., Lacasaña M., Rodríguez-Barranco, M., Tsatsakis A. M., Requena, M., & Alarcón, R. (2013). Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food Chem. Toxicol., 61, 144–151. https://doi.org/10.1016/j.fct.2013.05.012
  • Holt, G. J., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (1994). In: Bergey's Manual of Determinative Bacteriology. ninth ed. The Williams and Wilkins Pub., M. D., USA. Growth Applied and Environmental Microbiology, 66, 948–955.
  • Ismail, S. I., Ahmad Dahlan, K., Abdullah, S., & Zulperi, D. (2021). First Report of Neoscytalidium dimidiatum causing fruit rot on guava (Psidium guajava L.) in Malaysia. Plant Dis., 105, 220.
  • Izumi, H. (2011). Diversity of endophytic bacteria in forest trees. In Pirttila, A. M., Frank, A. C. (Eds) Endophyte of forest trees: Biology and application. Forestry Sciences, (pp. 95–105). Finland. https://doi.org/10.1007/978-94-007-1599-8_6Jaber, L. R. (2018). Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta, 248, 1525–1535. https://doi.org/10.1007/s00425-018-2991-x
  • Jasim, B., Sreelakshmi, S., Mathew, J., & Radhakrishnan, E. K. (2016) Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech 6(2), 187. https://doi.org/10.1007/s13205-016-0508-5
  • Ji, P., & Wilson, M. (2002). Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in bilogical control of bacterial speck of tomato. Applied and Environmental Microbiology, 68, 4383–4389. https://doi.org/10.1128/AEM.68.9.4383-4389.2002
  • Khoo, Y. W., Tan, H. T., Khaw, Y. S., Li, S. F., & Chong, K. P. (2023). First report of Neoscytalidium dimidiatum causing stem canker on Selenicereus megalanthus in Malaysia. Plant Dis., 107, 222. https://doi.org/10.1094/PDIS-03-22-0566-PDN
  • Li, A., Hu, T., Luo, H., Alam, N. U., Xin, J., Li, H., Lin, Y., Huang, J., Huang, K., & Meng, Y., et al. (2019). A carotenoid- and poly-β-hydroxybutyrate-free mutant strain of sphingomonas elodea atcc 31461 for the commercial production of gellan. mSphere, 4(5), 10–1128. https://doi.org/10.1128/mSphere.00668-19
  • Logan, N. A., & De Vos, P. (2009). Genus I. Bacillus Cohn 1872, 174AL. In De Vos, P., Garity, M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H. and Whitman, W. B. (Eds), Bergey’s manual of sysematic bacteriology (2nd Ed.) (pp. 21–128). Springer, New York.Mayorquin, J. S., Wang, D. H., Twizeyimana, M., & Eskalen, A. (2016). Identification, distribution, and pathogenicity of Diatrypaceae and Botryosphaeriaceae associated with citrus branch canker in the Southern California desert. Plant Dis., 100(12), 2402–2413. https://doi.org/10.1094/PDIS-03-16-0362-RE
  • Mello, J. F., Brito, A. C. Q., Motta, C. M. S., Vieira, J. C. B., Michereff, S. J., & Machado, A. R. (2019). First report of Neoscytalidium dimidiatum causing root rot in sweet potato in Brazil. Plant Dis., 103, 373. https://doi.org/10.1094/PDIS-07-18-1242-PDN
  • Mishra M., Kumar, U., Mishra, P. K., & Prakash. V. (2010). The efficiency of plant growth-promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv. Biol. Res., 4(2), 92–96.
  • Monteles, R. P., Sousa, E. S., da Silva Matos, K., de Brito, V. S. T., de Melo, M. P., & Beserra, J. E. A. (2020). Neoscytalidium dimidiatum causes leaf blight on Sansevieria trifasciata in Brazil. Australas. Plant Dis. Notes, 15(1), 19. https://doi.org/10.1007/s13314-020-00389-6
  • Nouri, M. T., Lawrence, D. P., Yaghmour, M. A., Michailides, T. J., & Trouillas, F. P. (2018). Neoscytalidium dimidiatum causing canker, shoot blight and fruit rot of almond in California. Plant Dis., 102, 1638–1647. https://doi.org/10.1094/PDIS-12-17-1967-RE
  • Oksal, E., Çelik, Y., & Özer, G. (2019). Neoscytalidium dimidiatum causes canker and dieback on grapevine in Turkey. Australas. Plant Dis. Notes, 14, 33. https://doi.org/10.1007/s13314-019-0363-4
  • Oksal, E., Yigit, T., & Özer, G. (2020). First report of Neoscytalidium dimidiatum causing shoot blight, dieback and canker of apricot in Turkey. J. Plant Pathol., 102, 579–580. https://doi.org/10.1007/s42161-019-00467-4
  • Öksel, C., Balkan, A., Bilgin, O., & Mirik, M., et al. (2022). Investigation of The Effect of PGPR on Yield And Some Yield Components In Winter Wheat (Triticum aestivum L.). Turkish Journal Of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019160
  • Özer, G., Günen, T. U., Koşar, İ., Güler, İ. G., & Derviş, S. (2022). First report of Neoscytalidium dimidiatum causing blight of Melissa officinalis in Turkey. J. Plant Dis. Prot., 129, 197–199. https://doi.org/10.1007/s41348-021-00522-2
  • Pan, D., Mionetto, A., Tiscornia, S., & Bettucci, L. (2015). Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res., 31, 137–143. https://doi.org/10.1007/s12550-015-0224-8
  • Patel, J. K., Mistry, Y., Soni, R., & Jha, A. (2024). Evaluation of Antifungal Activity of Endophytic Bacillus spp. and Identification of Secondary Metabolites Produced Against the Phytopathogenic Fungi. Curr. Microbiol., 81(5), 128. https://doi.org/10.1007/s00284-024-03652-6
  • Polizzi, G., Aiello, D., Vitale, A., Giuffrida, F., Groenewald, J. Z., & Crous, P. W. (2009). First Report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Dis., 93, 1215. https://doi.org/10.1094/PDIS-93-11-1215A
  • Rolshausen, P. E., Akgul, D. S., Perez, R., Eskalen, A., & Gispert, C. (2013). First report of wood canker caused by Neoscytalidium dimidiatum on grapevine in California. Plant Dis., 97(11), 1511. https://doi.org/10.1094/PDIS-04-13-0451-PDN
  • Roy, M., Chatterjee, S., & Dangar, T. K. (2021). Characterization and mosquitocidal potency of a Bacillus thuringiensis strain of rice field soil of Burdwan, West Bengal, India. Microb. Pathog. 158, 105093. doi: 10.1016/j.micpath.2021.105093
  • Salunkhe, V. N., Bhagat, Y. S., Chavan, S. B., Lonkar, S.G., & Kakade, V. D. (2023). First report of Neoscytalidium dimidiatum causing stem canker of dragon fruit (Hylocereus spp.) in India. Plant Dis., 107, 1222. https://doi.org/10.1094/PDIS-04-22-0909-PDN
  • Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiol. Res., 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
  • Sari, E., Etebarian, H. R., Roustaei, A., & Aminian, H. (2006). Biological control of Gaeumannomyces graminis on wheat with Bacillus spp. Plant Pathol. J., 5, 307–314. https://doi.org/10.3923/ppj.2006.307.314
  • Sha, S., Wang, Z., Hao, H., Wang, L., & Feng, H. (2022). First report of Neoscytalidium dimidiatum inducing canker disease on apple trees in China. J. Plant Pathol., 104(1), 1149–1150. https://doi.org/10.1007/s42161-022-01131-0
  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950
  • Simons M., van der Bij A. J., Brand I., de Weger L. A., Wijffelman C. A., & Lugtenberg B. (1996). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant Microbe Interact. 9, 600–607. 10.1094/MPMI-9-0600
  • Singh, M., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: A new source of bioactive compounds. 3 Biotech., 7(5), 315. https://doi.org/10.1007/s13205-017-0942-z
  • Singh, V. K., Shukla, A. K., & Singh, A. K. (2024). Endophytic Bacillus species as multifaceted toolbox for agriculture, environment, and medicine. Environ. Dev. Sustain. 2024, 1-40. https://doi.org/10.1007/s10668-024-05706-y
  • Snook, M. E., Mitchell, T., Hinton, D. M., & Bacon, C. W. (2009). Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J. Agric. Food Chem., 57(10), 4287–4292. https://doi.org/10.1021/jf900 164h
  • Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health, 18, 1112.
  • TURKSTAT (2023). Turkish Statistical Institute, Agricultural Istatistics, Ankara. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. [Access date: 19.12.2024]
  • Türkölmez, ¸S., Dervis, S., Çiftçi, O., & Dikilitas, M. (2019a). First report of Neoscytalidium dimidiatum causing shoot and needle blight of pines (Pinus spp.) in Turkey. Plant Dis., 103(11), 2960–2961. https://doi.org/10.1094/PDIS-05-19-0964-PDN
  • Türkölmez, S., Derviş, S., Çiftçi, O., Ulubaş Serçe, Ç., Türkölmez, C. G., & Dikilitas, M. (2019b). First report of Neoscytalidium dimidiatum causing dieback, shoot blight, and branch canker of willow trees in Turkey. Plant Dis., 103(6), 2139. https://doi.org/10.1094/PDIS-01-19-0053-PDN
  • Wang, S., Liu, J., Li, C., & Chung, B. M. (2019). Efficiency of Nannochloropsis oculata and Bacillus polymyxa symbiotic composite at ammonium and phosphate removal from synthetic wastewater. Environ. Technol. 40, 2494–2503. https://doi.org/10.1080/09593330.2018.1444103
  • Xiao, L., Xie, C. C., Cai, J., Lin, Z. J., & Chen, Y. H. (2009). Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr. Microbiol., 58(5), 528–533. https://doi.org/10.1007/ s00284-009-9363-5
  • Zvyagintsev, D. G. (1991). Methods for Soil Microbiology and Biochemistry. Moscow State University, Moscow. (303 p.) In Russian.
There are 85 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Articles
Authors

İnci Güler Güney 0000-0002-2544-8712

Early Pub Date June 20, 2025
Publication Date June 30, 2025
Submission Date December 13, 2024
Acceptance Date April 17, 2025
Published in Issue Year 2025 Volume: 35 Issue: 2

Cite

APA Güler Güney, İ. (2025). Antifungal Activity of Endophytic Bacillus spp. Bacteria and Its Effect on Root and Coleoptile Length during Germination Period. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(2), 334-349. https://doi.org/10.29133/yyutbd.1601276
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.