Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 2, 248 - 258, 30.06.2025
https://doi.org/10.29133/yyutbd.1637150

Abstract

Project Number

2022/117

References

  • Balkan, T., & Kara, K. (2023). Dissipation kinetics of some pesticides applied singly or in mixtures in/on grape leaf. Pest Management Science, 79, 1234-1242. doi:10.1002/ps.7299
  • Balkan, T., & Yılmaz, Ö. (2022). Efficacy of some washing solutions for removal of pesticide residues in lettuce. Beni-Suef University Journal of Basic and Applied Sciences, 11, 143. doi:10.1186/s43088-022-00324-x
  • Cebeci, A. N. (2020). A research on the use of agricultural pollution and pesticide: Manisa Province, Sarıgol and Alasehir sample. Journal of Current Research on Engineering, Science and Technology, 6, 1-22. doi:10.26579/jocrest.41
  • Constantinou, M., Louca-Christodoulou, D., & Agapiou, A. (2021). Method validation for the determination of 314 pesticide residues using tandem MS systems (GC–MS/MS and LC-MS/MS) in raisins: focus on risk exposure assessment and respective processing factors in real samples (a pilot survey). Food Chemistry, 360, 129964. doi:10.1016/j.foodchem.2021.129964
  • Demiray, A., & Hatırlı, S. A. (2021) Econometric analysis of Turkey's raisins export. Eurasian Journal of Researches in Social and Economic, 8, 165-182.
  • Dinçay, O., İsfendiyaroğlu, G., & Aydın, A. (2017). Determination and comparison of pesticide residues in fresh grapes harvested from different vineyards and raisins obtained from fresh grapes after two different drying methods. Turkish Journal Of Agriculture-Food Science and Technology, 5, 1031–1037. doi:10.24925/turjaf.v5i9.1031-1037.1206
  • Dülger, H., & Tiryaki, O. (2021). Investigation of pesticide residues in peach and nectarine sampled from Çanakkale, Turkey, and consumer dietary risk assessment. Environmental Monitoring and Assessment, 193, 561. doi:10.1007/s10661-021-09349-8
  • Duman, A., & Tiryaki, O. (2022). Determination of chlorpyrifos-methyl, lambda-cyhalothrin and tebuconazole residues in Sultana seedless grapes sprayed with pesticides under farmer’s conditions. Journal of Environmental Science and Health, Part B, 57, 325–332. doi:10.1080/03601234.2022.2051415
  • EU-MRL, (2024). European Union pesticides database, pesticide residues MRLs. Directorate General for Health & Consumers. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls. Access date: 18.01.2024.
  • FAO, (2024). Cropsdata. http://www.fao.org/faostat/en/#data/QC. Access date: 25.12.2024.
  • FAO/WHO, (2018). Discussion paper on the review of the International Estimate of Short-Term Intake Equations (IESTI). Joint FAO/WHO Food Standards Programme, Codex Committee on Pesticide Residues, 50th Session, Haikou, P.R. China, 9-14 April 2018.
  • Farshidi, M., Mohebbi, A., Moludi, J., & Ebrahimi, B. (2023). Evaluation of ready-to-eat raisins marketed in Iran: physicochemical properties, microbiological quality, heavy metal content, and pesticide residues. Erwerbs-Obstbau, 65, 1013–1025. doi:10.1007/s10341-022-00749-9
  • Gazioğlu Şensoy, R. İ., Ersayar, L., & Doğan, A. (2017). Determination of pesticide residue amounts in fresh grapes, raisins and pickled grape leaves sold in Van Province. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(3), 436-446. doi:10.29133/yyutbd.318144
  • Güçer, Y., Poyrazoğlu, E. S., & Artık, N. (2021). GC/MS determination of volatile aromatic compounds of Kalecik Karasi must produced by cold maceration. Journal of the Faculty of Engineering and Architecture of Gazi University, 36, 1531-1538. doi:10.17341/gazimmfd.719047
  • Kanbolat, M., Balkan, T., & Kara, K. (2023). Verification of QuEChERS Method for the Analysis of Pesticide Residues and Their Risk Assessment in Some Fruits Grown in Tokat, Turkey. Journal of Agricultural Sciences, 29(2), 573-588. doi:10.15832/ankutbd.1122538
  • Lehotay, S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90, 485-520. doi:10.1093/jaoac/90.2.485
  • Magnusson, B., & Örnemark, U. (2014). Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. 2nd ed. ISBN 978-91-87461-59-0. http://www.eurchem.org. Accessed: 08.02.2024.
  • Mahdavi, V., Gordan, H., Peivasteh-Roudsari, L., Thai, V. N., & Fakhri, Y. (2022). Carcinogenic and non-carcinogenic risk assessment induced by pesticide residues in commercially available ready-to-eat raisins of Iran based on Monte Carlo Simulation. Environmental research, 206, 112253. doi:10.1016/j.envres.2021.112253
  • Nalcı, T., Dardeniz, A., Polat, B., & Tiryaki, O.(2018). Determination of pesticide residue amounts of early and middle/late turfan grape cultivars by quechers analysis method. COMU Journal of Agriculture Faculty, 6(special issue), 39-44.
  • Nerpagar, A., Langade, N., Patil, R., Chiplunkar, S., Kelkar, J., & Banerjee, K. (2023). Dynamic headspace GC-MS/MS analysis of ethylene oxide and 2-chloroethanol in dry food commodities: a novel approach. Journal of Environmental Science and Health, Part B, 58, 659–670. doi:10.1080/03601234.2023.2264740
  • Polat, B. (2021). Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45(1), 125-137. https://doi.org/10.16970/entoted.843754
  • Polat, B., & Tiryaki, O. (2022). Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. Turkish Journal of Entomology, 46(3), 251-261. https://doi.org/10.16970/entoted.1101713
  • PPP, (2023). Plant Protection Product Database Application. https://bku.tarimorman.gov.tr/Kullanim/TavsiyeArama?csrt=2789820862056200932. Access date: 08.07.2023.
  • Rahimi, A., Heshmati A., & Nili-Ahmadabadi, A. (2021). Changes in pesticide residues in field-treated fresh grapes during raisin production by different methods of drying. Drying Technology, 40, 1715–1728. doi:10.1080/07373937.2021.1919140
  • RASFF, (2024). Rapid Alert System for Food and Feed. https://webgate.ec.europa.eu/rasff-window/screen/list. Access date: 10.01.2024.
  • SANTE, (2021). Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/1132/2021. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf. Access date: 08.02.2022.
  • Shabeer, T. P. A., Jadhav, M., Girame, R., Hingmire, S., Bhongale, A., Pudale, A., & Banerjee, K. (2017). Targeted screening and safety evaluation of 276 agrochemical residues in raisins using buffered ethyl acetate extraction and liquid chromatography-tandem mass spectrometry analysis. Chemosphere, 184, 1036–1042. doi: 10.1016/j.chemosphere.2017.06.086
  • Soydan, D. K., Turgut, N., Yalçın, M., Turgut, C., & Karakuş, P. B. K. (2021). Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. Environmental Science and Pollution Research, 28(2021), 27511-27519. doi: 10.1007/s11356-021-12580-y
  • TUIK, (2024). Turkish Statistical Institute, Crop Production Statistics. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Urun-Denge-Tablolari-2023-53451&dil=1. Accessed 18.03.2025.
  • TUIK, (2025). Turkish Statistical Institute, Turkey Health Interview Survey. Web page: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=WEBW229PP/91tMV2m71fU6pRWq2F1ZD/lzOFFk0bNDi2rjAC8QDCRN62nr2M3n1K. Accessed 18.03.2025.
  • Turgut, C., Ornek, H., & Cutright, T. J. (2010). Pesticide residues in dried table grapes from the Aegean region of Turkey. Environmental Monitoring and Assessment, 167, 143–149. doi:10.1007/s10661-009-1037-z
  • Turgut, C., Ornek, H., & Cutright, T. J. (2011). Determination of pesticide residues in Turkey's table grapes: the effect of integrated pest management, organic farming, and conventional farming. Environmental Monitoring and Assessment, 173, 315–323. doi:10.1007/s10661-010-1389-4
  • WHO, (2024). Food safety GEMS/Food consumption database. https://www.who.int/teams/nutrition-and-food-safety/databases/global-environment-monitoring-system-food-contamination. Accessed 18.03.2025.
  • Yakar, Y. (2018). Determination of pesticide residues in seedless table grapes. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(4), 444-447. doi:10.29133/yyutbd.453960
  • Zhang, Y., Jiao, B., Zhao, Q., Wang, C., Chen, A., Cui, Y., He, Y., & Li, J. (2024). Determination, temporal variation and potential health risk assessment of pesticide residues in grapes from South and Southwest China. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 41(3), 287–302. doi:10.1080/19440049.2024.2309256
  • Zincke, F., Fischer, A., Arno, Kittelmann., Kraus, C., Scholz, R., & Michalski, B. (2022). European database of processing factors for pesticides residues in food (Versiyon 2). Zenodo. doi:10.5281/zenodo.6827098

Pesticide Residues in Raisin and Health Risk Assessment

Year 2025, Volume: 35 Issue: 2, 248 - 258, 30.06.2025
https://doi.org/10.29133/yyutbd.1637150

Abstract

This study aimed to determine pesticide residues in raisin samples from the Besni and Gölbaşı districts of Adıyaman province, located in the Southeastern Anatolia region of Türkiye. Method validation was carried out for parameters including linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, precision (repeatability and in-laboratory reproducibility), and measurement uncertainty. The results met the criteria outlined in SANTE/11312/2021. A total of 260 pesticides were analyzed, with pesticide residues detected in 95 out of 100 samples. Among these, 42 samples contained a single pesticide, while 53 samples had two or more residues. The insecticides cypermethrin, indoxacarb, and malathion, along with the fungicides boscalid, flubendiamide, fluopyram, pyrimethanil, and spiroxamine, were identified. All detected pesticide residues were within the LOQ and maximum residue limit (MRL), with no residues exceeding the MRL. According to the analysis, eight different pesticides were identified in the samples. The study confirms that pesticide residues in dried grape samples comply with the MRLs, suggesting minimal health risks for consumers, as both long-term and short-term dietary risks were found to be negligible. However, the presence of multiple pesticide residues underscores the need for ongoing monitoring and stringent regulatory measures to ensure food safety and maintain compliance. These findings provide valuable insights into improving sustainable agricultural practices in grape production and establishing a more effective monitoring system for pesticide residues in raisins

Ethical Statement

Ethics committee approval is not required for the study.

Project Number

2022/117

References

  • Balkan, T., & Kara, K. (2023). Dissipation kinetics of some pesticides applied singly or in mixtures in/on grape leaf. Pest Management Science, 79, 1234-1242. doi:10.1002/ps.7299
  • Balkan, T., & Yılmaz, Ö. (2022). Efficacy of some washing solutions for removal of pesticide residues in lettuce. Beni-Suef University Journal of Basic and Applied Sciences, 11, 143. doi:10.1186/s43088-022-00324-x
  • Cebeci, A. N. (2020). A research on the use of agricultural pollution and pesticide: Manisa Province, Sarıgol and Alasehir sample. Journal of Current Research on Engineering, Science and Technology, 6, 1-22. doi:10.26579/jocrest.41
  • Constantinou, M., Louca-Christodoulou, D., & Agapiou, A. (2021). Method validation for the determination of 314 pesticide residues using tandem MS systems (GC–MS/MS and LC-MS/MS) in raisins: focus on risk exposure assessment and respective processing factors in real samples (a pilot survey). Food Chemistry, 360, 129964. doi:10.1016/j.foodchem.2021.129964
  • Demiray, A., & Hatırlı, S. A. (2021) Econometric analysis of Turkey's raisins export. Eurasian Journal of Researches in Social and Economic, 8, 165-182.
  • Dinçay, O., İsfendiyaroğlu, G., & Aydın, A. (2017). Determination and comparison of pesticide residues in fresh grapes harvested from different vineyards and raisins obtained from fresh grapes after two different drying methods. Turkish Journal Of Agriculture-Food Science and Technology, 5, 1031–1037. doi:10.24925/turjaf.v5i9.1031-1037.1206
  • Dülger, H., & Tiryaki, O. (2021). Investigation of pesticide residues in peach and nectarine sampled from Çanakkale, Turkey, and consumer dietary risk assessment. Environmental Monitoring and Assessment, 193, 561. doi:10.1007/s10661-021-09349-8
  • Duman, A., & Tiryaki, O. (2022). Determination of chlorpyrifos-methyl, lambda-cyhalothrin and tebuconazole residues in Sultana seedless grapes sprayed with pesticides under farmer’s conditions. Journal of Environmental Science and Health, Part B, 57, 325–332. doi:10.1080/03601234.2022.2051415
  • EU-MRL, (2024). European Union pesticides database, pesticide residues MRLs. Directorate General for Health & Consumers. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls. Access date: 18.01.2024.
  • FAO, (2024). Cropsdata. http://www.fao.org/faostat/en/#data/QC. Access date: 25.12.2024.
  • FAO/WHO, (2018). Discussion paper on the review of the International Estimate of Short-Term Intake Equations (IESTI). Joint FAO/WHO Food Standards Programme, Codex Committee on Pesticide Residues, 50th Session, Haikou, P.R. China, 9-14 April 2018.
  • Farshidi, M., Mohebbi, A., Moludi, J., & Ebrahimi, B. (2023). Evaluation of ready-to-eat raisins marketed in Iran: physicochemical properties, microbiological quality, heavy metal content, and pesticide residues. Erwerbs-Obstbau, 65, 1013–1025. doi:10.1007/s10341-022-00749-9
  • Gazioğlu Şensoy, R. İ., Ersayar, L., & Doğan, A. (2017). Determination of pesticide residue amounts in fresh grapes, raisins and pickled grape leaves sold in Van Province. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(3), 436-446. doi:10.29133/yyutbd.318144
  • Güçer, Y., Poyrazoğlu, E. S., & Artık, N. (2021). GC/MS determination of volatile aromatic compounds of Kalecik Karasi must produced by cold maceration. Journal of the Faculty of Engineering and Architecture of Gazi University, 36, 1531-1538. doi:10.17341/gazimmfd.719047
  • Kanbolat, M., Balkan, T., & Kara, K. (2023). Verification of QuEChERS Method for the Analysis of Pesticide Residues and Their Risk Assessment in Some Fruits Grown in Tokat, Turkey. Journal of Agricultural Sciences, 29(2), 573-588. doi:10.15832/ankutbd.1122538
  • Lehotay, S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90, 485-520. doi:10.1093/jaoac/90.2.485
  • Magnusson, B., & Örnemark, U. (2014). Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. 2nd ed. ISBN 978-91-87461-59-0. http://www.eurchem.org. Accessed: 08.02.2024.
  • Mahdavi, V., Gordan, H., Peivasteh-Roudsari, L., Thai, V. N., & Fakhri, Y. (2022). Carcinogenic and non-carcinogenic risk assessment induced by pesticide residues in commercially available ready-to-eat raisins of Iran based on Monte Carlo Simulation. Environmental research, 206, 112253. doi:10.1016/j.envres.2021.112253
  • Nalcı, T., Dardeniz, A., Polat, B., & Tiryaki, O.(2018). Determination of pesticide residue amounts of early and middle/late turfan grape cultivars by quechers analysis method. COMU Journal of Agriculture Faculty, 6(special issue), 39-44.
  • Nerpagar, A., Langade, N., Patil, R., Chiplunkar, S., Kelkar, J., & Banerjee, K. (2023). Dynamic headspace GC-MS/MS analysis of ethylene oxide and 2-chloroethanol in dry food commodities: a novel approach. Journal of Environmental Science and Health, Part B, 58, 659–670. doi:10.1080/03601234.2023.2264740
  • Polat, B. (2021). Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45(1), 125-137. https://doi.org/10.16970/entoted.843754
  • Polat, B., & Tiryaki, O. (2022). Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. Turkish Journal of Entomology, 46(3), 251-261. https://doi.org/10.16970/entoted.1101713
  • PPP, (2023). Plant Protection Product Database Application. https://bku.tarimorman.gov.tr/Kullanim/TavsiyeArama?csrt=2789820862056200932. Access date: 08.07.2023.
  • Rahimi, A., Heshmati A., & Nili-Ahmadabadi, A. (2021). Changes in pesticide residues in field-treated fresh grapes during raisin production by different methods of drying. Drying Technology, 40, 1715–1728. doi:10.1080/07373937.2021.1919140
  • RASFF, (2024). Rapid Alert System for Food and Feed. https://webgate.ec.europa.eu/rasff-window/screen/list. Access date: 10.01.2024.
  • SANTE, (2021). Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/1132/2021. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf. Access date: 08.02.2022.
  • Shabeer, T. P. A., Jadhav, M., Girame, R., Hingmire, S., Bhongale, A., Pudale, A., & Banerjee, K. (2017). Targeted screening and safety evaluation of 276 agrochemical residues in raisins using buffered ethyl acetate extraction and liquid chromatography-tandem mass spectrometry analysis. Chemosphere, 184, 1036–1042. doi: 10.1016/j.chemosphere.2017.06.086
  • Soydan, D. K., Turgut, N., Yalçın, M., Turgut, C., & Karakuş, P. B. K. (2021). Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. Environmental Science and Pollution Research, 28(2021), 27511-27519. doi: 10.1007/s11356-021-12580-y
  • TUIK, (2024). Turkish Statistical Institute, Crop Production Statistics. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Urun-Denge-Tablolari-2023-53451&dil=1. Accessed 18.03.2025.
  • TUIK, (2025). Turkish Statistical Institute, Turkey Health Interview Survey. Web page: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=WEBW229PP/91tMV2m71fU6pRWq2F1ZD/lzOFFk0bNDi2rjAC8QDCRN62nr2M3n1K. Accessed 18.03.2025.
  • Turgut, C., Ornek, H., & Cutright, T. J. (2010). Pesticide residues in dried table grapes from the Aegean region of Turkey. Environmental Monitoring and Assessment, 167, 143–149. doi:10.1007/s10661-009-1037-z
  • Turgut, C., Ornek, H., & Cutright, T. J. (2011). Determination of pesticide residues in Turkey's table grapes: the effect of integrated pest management, organic farming, and conventional farming. Environmental Monitoring and Assessment, 173, 315–323. doi:10.1007/s10661-010-1389-4
  • WHO, (2024). Food safety GEMS/Food consumption database. https://www.who.int/teams/nutrition-and-food-safety/databases/global-environment-monitoring-system-food-contamination. Accessed 18.03.2025.
  • Yakar, Y. (2018). Determination of pesticide residues in seedless table grapes. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(4), 444-447. doi:10.29133/yyutbd.453960
  • Zhang, Y., Jiao, B., Zhao, Q., Wang, C., Chen, A., Cui, Y., He, Y., & Li, J. (2024). Determination, temporal variation and potential health risk assessment of pesticide residues in grapes from South and Southwest China. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 41(3), 287–302. doi:10.1080/19440049.2024.2309256
  • Zincke, F., Fischer, A., Arno, Kittelmann., Kraus, C., Scholz, R., & Michalski, B. (2022). European database of processing factors for pesticides residues in food (Versiyon 2). Zenodo. doi:10.5281/zenodo.6827098
There are 36 citations in total.

Details

Primary Language English
Subjects Pesticides and Toxicology
Journal Section Articles
Authors

Ömer Faruk Özbek 0000-0002-4561-7237

Tarık Balkan 0000-0003-4756-4842

Kenan Kara 0000-0003-0439-5639

Project Number 2022/117
Early Pub Date June 20, 2025
Publication Date June 30, 2025
Submission Date February 10, 2025
Acceptance Date April 2, 2025
Published in Issue Year 2025 Volume: 35 Issue: 2

Cite

APA Özbek, Ö. F., Balkan, T., & Kara, K. (2025). Pesticide Residues in Raisin and Health Risk Assessment. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(2), 248-258. https://doi.org/10.29133/yyutbd.1637150
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.