Year 2019, Volume 20, Issue , Pages 45 - 54 2019-02-01

CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS

Özge Sezin SOMUNCU [1] , Umay ÇELİK [2] , Büşra ERGÜN [3] , Emre ARPALI [4]

41 184

Metabolic rate of glucose uptake is generally controlled by a feedback mechanism covering islet β cells and insulin-sensitive tissues, wherein tissue sensitivity to insulin influences the level of β-cell comeback. In case of insulin presence, β cells preserve standard glucose tolerance via enhancing insulin production. Even though β-cell dysfunction has a strong hereditary component, environmental alterations carry an important part as well. Current research methods have facilitated to establish the important part of hexoses, amino acids, and fatty acids in the development of insulin resistance and β-cell dysfunction, therefore more operative treatments to slow the progressive loss of β-cell function are required. Latest discoveries from clinical research deliver significant information about approaches to stop and treat diabetes and some of the adversative properties of these interferences. Generation of satisfactory numbers of pancreatic endocrine cells that work in the same way as primary islets is of supreme prominence for the expansion of cell treatments to cure. In this study, we focused on different techniques starting from islet and pancreas transplantations individually and ending on new therapies such as stem cell technology and bioengineering. We aimed to establish a comprehensive and detailed explanation of treatment perspectives for islet cell loss. This review is carrying a novel potential for enlightening the current treatments and future-based therapies.

Glikoz alımının metabolik oranı, genellikle adacık hücrelerini ve insüline duyarlı dokuları kapsayan bir geri bildirim mekanizması ile kontrol edilir. İnsülin varlığında β hücreleri insülin üretimini artırarak standart glikoz toleransını korurlar. β-hücre disfonksiyonunda kalıtsal bileşenlerin etkileri yüksek olsa da, çevresel değişikliklerin de önemli bir rol oynadığı gösterilmiştir. Güncel araştırma yöntemleri, insülin direnci ve β-hücre disfonksiyonunun oluşmasında heksozların, amino asitlerin ve yağ asitlerinin etkilerinin varlığını göstermekle birlikte, hücre fonksiyonunun aşamalı kaybını yavaşlatmak için daha etkili tedavilerin gerekliliğini de göstermektedir. Klinik araştırmalardan elde edilen sonuçlar diyabetin durdurulması ve tedavi edilmesi ve bu müdahalelerin olumsuz özelliklerinden bazıları ile ilgili önemli bilgiler sunmaktadır. Birincil adacık hücreleri ile aynı şekilde çalışan pankreatik endokrin hücrelerinin yeterli sayıda üretilmesi, iyileştirilmesi için hücre tedavilerinin genişletilmesi büyük öneme sahiptir. Bu derlemede, adacık ve pankreas transplantasyonlarından başlayıp kök hücre teknolojisi ve biyomühendislik odaklı yeni tedavi tekniklerinin incelenmesine odaklandık. Adacık hücre kaybı için tedavi perspektiflerinin kapsamlı ve ayrıntılı bir açıklamasını yapmayı amaçladık. Dolayısıyla bu inceleme, mevcut tedavileri ve geleceğe dayalı tedavileri aydınlatmak için açıklayıcı bir potansiyel taşımaktadır.

Stem cell therapy, islet cells, pancreas
  • Akinci, E., Banga, A., Greder, L.V., Dutton, J.R. & Slack, J.M.W. 2012. Reprogramming of pancreatic exocrine cells towards a beta (beta) cell character using Pdx1, Ngn3 and MafA. Biochemical Journal, 442: 539-550.
  • Burns, C.J., Persaud, S.J. & Jones, P.M. 2004. Stem cell therapy for diabetes: do we need to make beta cells? Journal of Endocrinology, 183: 437-443.
  • Calafiore, R., Basta, G., Luca, G., Calvitti, M., Calabrese, G., Racanicchi, L., Macchiarulo, G., Mancuso, F., Guido, L. & Brunetti, P. 2004. Grafts of microencapsulated pancreatic islet cells for the therapy of diabetes mellitus in non-immunosuppressed animals. Biotechnology and Applied Biochemistry, 39: 159-164.
  • Cheung, A.T., Dayanandan, B., Lewis, J.T., Korbutt, G.S., Rajotte, R.V., Bryer-Ash, M., Boylan, M.O., Wolfe, M.M. & Kieffer, T.J. 2000. Glucose-dependent insulin release from genetically engineered K cells. Science, 290: 1959-1962.
  • Cui, W., Kim, D.H., Imamura, M., Hyon, S.H. & Inoue, K. 2001. Tissue-engineered pancreatic islets: culturing rat islets in the chitosan sponge. Cell Transplantation, 10: 499-502.
  • Dean, P.G., Kukla, A., Stegall, M.D. & Kudva, Y.C. 2017. Pancreas transplantation. British Medical Journal, 357pp.
  • Ellis, C., Ramzy, A. & Kieffer, T.J. 2017. Regenerative medicine and cell-based approaches to restore pancreatic function. Nature Reviews Gastroenterology & Hepatology, 14: 612-628.
  • Fioretto, P., Steffes, M.W., Sutherland, D.E.R., Goetz, F.C. & Mauer, M. 1998. Reversal of lesions of diabetic nephropathy after pancreas transplantation. New England Journal of Medicine, 339: 69-75.
  • Green, A.D., Vasu, S. & Flatt, P.R. 2018. Cellular models for beta-cell function and diabetes gene therapy. Acta physiologica, 222. https://doi.org/10.1111/apha.13012
  • Hafiz, M.M., Faradji, R.N., Froud, T., Pileggi, A., Baidal, D.A., Cure, P., Ponte, G., Poggioli, R., Cornejo, A., Messinger, S., Ricordi, C. & Alejandro, R. 2005. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation, 80: 1718-1728.
  • Halpin, A., Floora, H., Hidalgo, L., Shapiro, J., Senior, P., Bigam, D. & Campbell, P. 2017. Patient Tailored Crossmatch, Do Islet Cell and Pancreas Transplants Call for a Different Fit? Transplantation, 101: 29.
  • Hammerman, M.R. 2007. Organogenesis of kidney and endocrine pancreas: the window opens. Organogenesis, 3: 59-66.
  • Hussain, M.A. & Theise, N.D. 2004. Stem-cell therapy for diabetes mellitus. Lancet, 364: 203-205.
  • Iacovacci, V., Ricotti, L., Menciassi, A. & Dario, P. 2016. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochemical Pharmacology, 100: 12-27.
  • Ikemoto, T., Noguchi, H., Shimoda, M., Naziruddin, B., Jackson, A., Tamura, Y., Fujita, Y., Onaca, N., Levy, M.F. & Matsumoto, S. 2009. Islet cell transplantation for the treatment of type 1 diabetes in the USA. Journal of Hepato-Biliary-Pancreatic Surgery, 16: 118-123.
  • Kim, H.J., Li, Q., Song, W.J., Yang, H.M., Kim, S.Y., Park, S.C., Ahn, J.O. & Youn, H.Y. 2018. Fibroblast growth factor-1 as a mediator of paracrine effects of canine adipose tissue-derived mesenchymal stem cells on in vitro-induced insulin resistance models. BMC Veterinary Research, 14: 351.
  • Kojima, H., Fujimiya, M., Matsumura, K., Younan, P., Imaeda, H., Maeda, M. & Chan, L. 2003. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nature Medicine, 9: 596-603.
  • Kutsogiannis, D.J., Pagliarello, G., Doig, C., Ross, H. & Shemie, S.D. 2006. Medical management to optimize donor organ potential: review of the literature. Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 53: 820-830.
  • Larsen, J.L. 2004. Pancreas transplantation: indications and consequences. Endocrine Reviews, 25: 919-946.
  • Li, Y., Koshiba, T., Yoshizawa, A., Yonekawa, Y., Masuda, K., Ito, A., Ueda, M., Mori, T., Kawamoto, H., Tanaka, Y., Sakaguchi, S., Minato, N., Wood, K.J. & Tanaka, K. 2004. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. American Journal of Transplantation, 4: 2118-2125.
  • Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R. & McKay, R. 2001. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292: 1389-1394.
  • Maden, M. 2001. Role and distribution of retinoic acid during CNS development. International Review of Cytology, 209: 1-77.
  • Mann, D.M., Ponieman, D., Leventhal, H. & Halm, E.A. 2009. Misconceptions about diabetes and its management among low-income minorities with diabetes. Diabetes Care, 32: 591-593.
  • Matsumoto, S. 2010. Islet cell transplantation for Type 1 diabetes. Journal of Diabetes, 2: 16-22.
  • McCall, M.D., Toso, C., Baetge, E.E. & Shapiro, A.M. 2009. Are stem cells a cure for diabetes? Clinical Science, 118: 87-97.
  • Millman, J.R. & Pagliuca, F.W. 2017. Autologous Pluripotent Stem Cell-Derived -Like Cells for Diabetes Cellular Therapy. Diabetes, 66: 1111-1120.
  • Mirmalek-Sani, S.H., Orlando, G., McQuilling, J.P., Pareta, R., Mack, D.L., Salvatori, M., Farney, A.C., Stratta, R.J., Atala, A., Opara, E.C. & Soker, S. 2013. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials, 34: 5488-5495.
  • NCD Risk Factor Collaboration (NCD-RisC) 2016. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 387(10027): 1513-1530. https://doi.org/10.1016/S0140-6736(16)00618-8
  • Oksuz, E., Malhan, S., Urganci, B. & Tetik, E. 2017. Cost-Minimization Analysis of Linagliptin Compared to Sitagliptin in the Treatment of Type 2 Diabetes Mellitus from a Turkish Healthcare Perspective. Journal of Diabetes & Metabolism, 8: 739. https://doi.org/10.4172/2155-6156.1000739
  • Petersmann, A., Nauck, M., Muller-Wieland, D., Kerner, W., Muller, U.A., Landgraf, R., Freckmann, G. & Heinemann, L. 2018. Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 126: 406-410.
  • Petersen, M.B.K., Azad, A., Ingvorsen, C., Hess, K., Hansson, M., Grapin-Botton, A. & Honoré, C. (2017). Single-cell gene expression analysis of a human ESC model of pancreatic endocrine development reveals different paths to β-cell differentiation. Stem cell reports, 9(4): 1246-1261.
  • Pysna, A., Bem, R., Nemcova, A., Fejfarova, V., Jirkovska, A., Hazdrova, J., Jude, E.B. & Dubsky, M. 2018. Endothelial Progenitor Cells Biology in Diabetes Mellitus and Peripheral Arterial Disease and their Therapeutic Potential. Stem Cell Reviews, 9. https://doi.org/10.1007/s12015-018-9863-4
  • Qi, M., Gu, Y., Sakata, N., Kim, D., Shirouzu, Y., Yamamoto, C., Hiura, A., Sumi, S. & Inoue, K. 2004. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials, 25: 5885-5892.
  • Ravassard, P., Hazhouz, Y., Pechberty, S., Bricout-Neveu, E., Armanet, M., Czernichow, P. & Scharfmann, R. 2011. A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. Journal of Clinical Investigation, 121: 3589-3597.
  • Rees, D.A. & Alcolado, J.C. 2005. Animal models of diabetes mellitus. Diabetic Medicine, 22: 359-370.
  • Ricordi, C. & Strom, T.B. 2004. Clinical islet transplantation: Advances and immunological challenges. Nature Reviews Immunology, 4: 258-268.
  • Sander, M. & German, M.S. 1997. The beta cell transcription factors and development of the pancreas. Journal of Molecular Medicine (Berlin), 75: 327-340.
  • Schonhoff, S.E., Giel-Moloney, M. & Leiter, A.B. 2004. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Developmental Biology, 270: 443-454.
  • Seemayer, T.A., Oligny, L.L., Tannenbaum, G.S., Goldman, H. & Colle, E. 1980. Animal-Model of Human-Disease - Diabetes-Mellitus. American Journal of Pathology, 101: 485-488.
  • Shapiro, A.M.J., Lakey, J.R.T., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. & Rajotte, R.V. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. New England Journal of Medicine, 343: 230-238.
  • Shi, Y., Hou, L., Tang, F., Jiang, W., Wang, P., Ding, M. & Deng, H. 2005. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells, 23: 656-662.
  • Silva, A.I., de Matos, A.N., Brons, I.G. & Mateus, M. 2006. An overview on the development of a bio-artificial pancreas as a treatment of insulin-dependent diabetes mellitus. Medicinal Research Reviews, 26: 181-222.
  • Song, J.J. & Ott, H.C. 2011. Organ engineering based on decellularized matrix scaffolds. Trends in Molecular Medicine, 17: 424-432.
  • Soria, B., Skoudy, A. & Martin, F. 2001. From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. Diabetologia, 44: 407-415.
  • Thorel, F., Nepote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S. & Herrera, P.L. 2010. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature, 464: 1149-1154.
  • Vanikar, A.V., Trivedi, H.L. & Thakkar, U.G. 2016. Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus. Cytotherapy, 18: 1077-1086.
  • Wagman, A.S. & Nuss, J.M. 2001. Current therapies and emerging targets for the treatment of diabetes. Current Pharmaceutical Design, 7: 417-450.
  • Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22: 1330-1337.
  • Williams, J.M., Holzknecht, Z.E., Plummer, T.B., Lin, S.S., Brunn, G.J. & Platt, J.L. 2004. Acute vascular rejection and accommodation: divergent outcomes of the humoral response to organ transplantation. Transplantation, 78: 1471-1478.
  • Wu, H. & Mahato, R.I. 2014. Mesenchymal Stem Cell-based Therapy for Type 1 Diabetes. Discovery Medicine, 17: 139-143.
  • Yang, L., Li, S., Hatch, H., Ahrens, K., Cornelius, J.G., Petersen, B.E. & Peck, A.B. 2002. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proceedings of the National Academy of Sciences of the United States of America, 99: 8078-8083.
  • Yoshida, S., Ishikawa, F., Kawano, N., Shimoda, K., Nagafuchi, S., Shimoda, S., Yasukawa, M., Kanemaru, T., Ishibashi, H., Shultz, L.D. & Harada, M. 2005. Human cord blood--derived cells generate insulin-producing cells in vivo. Stem Cells, 23: 1409-1416.
  • Zhang, Y.C., Pileggi, A., Agarwal, A., Molano, R.D., Powers, M., Brusko, T., Wasserfall, C., Goudy, K., Zahr, E., Poggioli, R., Scott-Jorgensen, M., Campbell-Thompson, M., Crawford, J.M., Nick, H., Flotte, T., Ellis, T.M., Ricordi, C., Inverardi, L. & Atkinson, M.A. 2003. Adeno-associated virus-mediated IL-10 gene therapy inhibits diabetes recurrence in syngeneic islet cell transplantation of NOD mice. Diabetes, 52: 708-716.
  • Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D.A. 2008. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455: 627-632.
Primary Language en
Subjects Biology
Journal Section Review/Derleme
Authors

Orcid: 0000-0002-0841-8263
Author: Özge Sezin SOMUNCU (Primary Author)
Institution: Bahcesehir University
Country: Turkey


Orcid: 0000-0001-7939-2788
Author: Umay ÇELİK
Institution: Bahcesehir University
Country: Turkey


Orcid: 0000-0001-9508-6035
Author: Büşra ERGÜN
Institution: Bahcesehir University
Country: Turkey


Orcid: 0000-0001-6172-2398
Author: Emre ARPALI
Institution: KOC UNIVERSITY
Country: Turkey


Dates

Application Date: October 11, 2018
Acceptance Date: January 21, 2019
Publication Date: February 1, 2019

Bibtex @review { trkjnat469530, journal = {Trakya University Journal of Natural Sciences}, issn = {2147-0294}, eissn = {2528-9691}, address = {Trakya University}, year = {2019}, volume = {20}, pages = {45 - 54}, doi = {10.23902/trkjnat.469530}, title = {CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS}, key = {cite}, author = {SOMUNCU, Özge Sezin and ÇELİK, Umay and ERGÜN, Büşra and ARPALI, Emre} }
APA SOMUNCU, Ö , ÇELİK, U , ERGÜN, B , ARPALI, E . (2019). CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS. Trakya University Journal of Natural Sciences, 20 (), 45-54. DOI: 10.23902/trkjnat.469530
MLA SOMUNCU, Ö , ÇELİK, U , ERGÜN, B , ARPALI, E . "CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS". Trakya University Journal of Natural Sciences 20 (2019): 45-54 <http://dergipark.org.tr/trkjnat/issue/39830/469530>
Chicago SOMUNCU, Ö , ÇELİK, U , ERGÜN, B , ARPALI, E . "CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS". Trakya University Journal of Natural Sciences 20 (2019): 45-54
RIS TY - JOUR T1 - CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS AU - Özge Sezin SOMUNCU , Umay ÇELİK , Büşra ERGÜN , Emre ARPALI Y1 - 2019 PY - 2019 N1 - doi: 10.23902/trkjnat.469530 DO - 10.23902/trkjnat.469530 T2 - Trakya University Journal of Natural Sciences JF - Journal JO - JOR SP - 45 EP - 54 VL - 20 IS - SN - 2147-0294-2528-9691 M3 - doi: 10.23902/trkjnat.469530 UR - https://doi.org/10.23902/trkjnat.469530 Y2 - 2019 ER -
EndNote %0 Trakya University Journal of Natural Sciences CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS %A Özge Sezin SOMUNCU , Umay ÇELİK , Büşra ERGÜN , Emre ARPALI %T CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS %D 2019 %J Trakya University Journal of Natural Sciences %P 2147-0294-2528-9691 %V 20 %N %R doi: 10.23902/trkjnat.469530 %U 10.23902/trkjnat.469530
ISNAD SOMUNCU, Özge Sezin , ÇELİK, Umay , ERGÜN, Büşra , ARPALI, Emre . "CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS". Trakya University Journal of Natural Sciences 20 / (February 2019): 45-54. https://doi.org/10.23902/trkjnat.469530
AMA SOMUNCU Ö , ÇELİK U , ERGÜN B , ARPALI E . CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS. Trakya Univ J Nat Sci. 2019; 20: 45-54.
Vancouver SOMUNCU Ö , ÇELİK U , ERGÜN B , ARPALI E . CONCISE REVIEW: β CELL REPLACEMENT THERAPIES IN TREATMENT OF DIABETES MELLITUS. Trakya University Journal of Natural Sciences. 2019; 20: 54-45.