Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Antioxidant Activities in Melon (Cucumis melo L.) Seedlings Exposed to Arsenic Stress

Yıl 2019, , 276 - 284, 22.04.2019
https://doi.org/10.30910/turkjans.557117

Öz

Arsenic (As) is a toxic metalloid for all living
organisms.
Uptake of As in plant tissues affects plant
metabolism and causes to several physiological and structural disorders. In this study, antioxidant profile of melon (Cucumis melo L.) seedlings exposed to different
arsenate [As(V)] treatments was investigated. Four seeds were sowed in
each magenta vessel including filter paper and following ten days after sowing,
melon seedlings were treated with Hoagland solution containing 0, 50, 100, 150 and 200 mg L-1 disodium
hydrogen arsenate heptahydrate (Na2HAsO4.7H2O) for 10 days. The experiment was set up in a plant growth cabinet as randomized plots
design with 3 replications.
Superoxide
dismutase (SOD) (EC 1.15.1.1) and catalase (CAT) (EC 1.11.1.6) enzyme activities
which are the key enzymes of antioxidant system, total antioxidant and lipid
peroxidation levels, the contents of photosynthetic pigments (total chlorophyll
and carotenoids) and free proline were determined in leaf and root tissues of
melon seedlings. In leaves, high concentration of As(V) (200 mg L-1)
treatment caused a significant decrease in total chlorophyll and carotenoid
content by 26% and 33%, respectively. SOD and CAT enzyme activities and total
antioxidant level increased in response to 100, 150 and 200 mg L-1
As(V) treatments in roots. In leaves, while SOD and CAT activities increased at
50 and 100 mg L-1 As(V) treatments, enzyme activities decreased as a
result of 100 and 150 mg L-1 As(V) treatments compared with other
As(V) treatments. Lipid peroxidation, one of the indicators of oxidative
stress, increased in leaf and root tissues under As(V) stress when compared
control. In addition, all As(V) treatments caused an increase in free proline
content in both tissues significantly.

Kaynakça

  • Anjum, S.A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., Hassan, W., Jan, S., Khan, I., Saleem, M.F., Bajwa, A.A., Wang, L., Mahmood, A., Samad, R.A., Tung, S.A. 2016. Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research, 23: 11864-11875.
  • Anjum, S.A., Tanveer, M., Hussain, S., Ashraf, U., Khan, I., Wang, L. 2017. Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water, Air, Soil & Pollution, 228: 13.
  • Arnon, D.I. 1949. Copper enzymes in isolated choloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15.
  • Azevedo, H., Gomes, C., Fernandes, J., Loureiro, S., Santos, C. 2005. Cadmium effects on sunflower growth and photosynthesis. Journal of Plant Nutrition, 28: 2211-2220.
  • Baccouch, S., Chaoui, A., El Ferjani, E. 1998. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiology and Biochemistry, 36: 689-694.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
  • Bowler, C.M., van Montagu, M., Inze, D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43: 83-116.
  • Briat, J.F. 2002. Metal ion-activated oxidative stress and its control. Oxidative stress in plants. (ed) Inze, D. ve Montagu, M.V. New York, USA, 171-189.
  • Carbonell-Barrachina, A., Burlo Carbonell, F., Mataix Beneyto, J. 1995. Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenic on plant growth and yield. Journal of Plant Nutrition, 18: 1237-1250.
  • Carbonell-Barrachina, A.A., Aarabi, M.A., De Laune, R.D., Gambrell, R.P., Patrick, W.H. 1998. The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil, 198: 33-43.
  • Chandrakar, V., Dubey, A., Keshavkant, S. 2018. Modulation of arsenic-induced oxidative stress and protein metabolism by diphenyleneiodonium, 24-epibrassinolide and proline in Glycine max L.. Acta Botanica Croatica, 77(1): 51–61.
  • Chun-xi, L., Shu-li, F., Yun, S., Li-na, J., Xu-yang, L., Xiao-li, H. 2007. Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Science, 19: 725-732.
  • Dwivedi, S., Tripathi, R.D., Srivastava, S., Singh, R., Kumar, A., Tripathi, P., Dave, P., Rai, U.N., Chakrabarty, D., Trivedi, P.K., Tuli, R., Adhikari, B., Bag, M.K. 2010a. Arsenic accumulation profile effects trace nutrients in different rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma, 245: 113-124.
  • Dwivedi, S., Tripathi, R.D., Tripathi, P., Kumar, A., Dave, R., Mishra, S., Singh, R., Sharma, D., Rai, U., Chakrabarty, D., Trivedi, P.K., Adhikari, B., Bag, M.K., Dhankher, O.P., Tuli, R. 2010b. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environmental Science & Technology, 44 (24): 9542-9549.
  • Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4): 277-285.
  • Fallah, S.F., Afshar-Mohammadian, M. 2017. Growth, antioxidant enzymes activities and photosynthetic pigments of two rice (Oryza sativa L.) Cultivars as influenced by application of gibberellic acid and sodium arsenate. Jordan Journal of Agricultural Sciences, 13(2): 381-392.
  • Finnegan, P.M. ve Chen, W. 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Plant Physiology, 3: 1-18.
  • Ghosh, S. ve Biswas, A.K. 2017. Selenium modulates growth and thiol metabolism in wheat (Triticum aestivum L.) during arsenic stress. American Journal of Plant Sciences, 8: 363-389.
  • Hasanuzzaman, M. ve Fujita, M. 2013. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22: 584-596.
  • Hartley-Whitaker, J., Ainsworth, G., Meharg, A.A. 2001. Copper and arsenate- induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell & Environment, 24: 713-722.
  • Hoagland, D.R., Arnon, D. 1938. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circulation, 347: 1-39.
  • Knauer, K., Behra, R., Hemond, H. 1999. Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquatic Toxicology, 46: 221-230.
  • Kumari, A., Pandey, N., Pandey-Rai, S. 2017. Protection of Artemisia annua roots and leaves against oxidative stress induced by arsenic. Biologia Plantarum, 61(2): 367-377.
  • Loureiro, S., Santos, C., Pinto, G., Costa, A., Monteiro, M., Nogueira, A.J.A, Soares, A.M.V.M. 2006. Toxicity assessment of two soils from Jales Mine (Portugal) using plants: growth and biochemical parameters. Archives of Environmental Contamination and Toxicology, 50: 182-190.
  • Madhava Rao, K.V., Stresty, T.V.S. 2000. Antioxidative parameters in the seedling of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stress. Plant Science, 157: 113-128.
  • Maksymiec, W. 2007. Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29(3): 177-187.
  • Mishra, S., Jha, A.B., Dubey, R.S. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma, 248: 565-577.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
  • Noctor, G., Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and plant Molecular Biology, 49: 249-279.
  • Pandey, C., Augustine, R., Panthri, M., Zia, I., Bisht, N.C., Gupta, M. 2017. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two Brassica cultivars. Plant Physiology and Biochemistry, 111:144-154.
  • Pita-Barbosa, A., Williams, T.C.R., Loureiro, M.E. 2019. Effects of short-term arsenic exposure in Arabidopsis thaliana: tolerance versus toxicity responses. Biologia Plantarum, 63: 43-53.
  • Requejo, R., Tena, M. 2005. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry, 66: 1519-1528.
  • Sharma, I. 2012. Arsenic induced oxidative stress in plants. Biologia, 67(3): 447-453.
  • Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P.K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R.D., Tuli, R. 2009. Effect of arsenic on growth, oxidative stress and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 72: 1102–1110.
  • Simola, L.K. 1997. The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Canadian Journal of Botany, 90: 375-405.
  • Singh, H.P., Batish, D.R., Kohlo, R.K., Arora, K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regulation, 53: 65-73.
  • Singh, S., Sounderajan, S., Kumar, K., Fulzelea, D.P. 2017. Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicology and Environmental Safety, 145: 50-56.
  • Souri, Z., Karimi, N., Oliveira, L.M. 2018. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology, 39(10): 1316-1327.
  • Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., Trivedi, P.K., Tandon, P.K. 2007. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillate (L.f.) Royle. Environmental Science & Technology, 41(8): 2930-2936.
  • Srivastava, S., Sinha, P., Sharma, Y.K. 2017. Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. Journal of Plant Nutrition, 40(3): 298-306.
  • Tripathi, B.N., Gaur, J.P. 2004. Relationship between copper and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta, 219: 397-404.
  • Tripathi, R.D., Tripathi, P., Dwivedi, S., Dubey, S., Chatterjee, S., Chakrabarty, D., Trivedi, P.K. 2012. Arsenomics: omics of arsenic metabolism in plants. Frontiers in Physiology, 3: 275.
  • Tiwari, S., Sarangi, B.K. 2017. Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecological Engineering, 100: 211-218.
  • Turner, J.G., Ellis, C., Devoto, A. 2002. The jasmonate signal pathway. The Plant Cell, Supplement 2002, S153–S164.
  • Ushimaru, T., Kanematsu, S., Shibasaka, M., Tsuji, H. 1999. Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa L.) seedlings. Physiologia Plantarum, 107:181-187.
  • Xiong, L., Schumaker, K.S., Zhu, J.K. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell, Supplement 2002, S165–S183.
  • Zhang, F., Shi, W., Jin, Z., Shen, Z. 2003. Response of antioxidative enzymes in cucumber chloroplasts to toxicity. Journal of Plant Nutrition, 26: 1779-1788.

Arsenik Stresine Maruz Kalan Kavun (Cucumis melo L.) Fidelerinde Antioksidan Aktivitelerinin Belirlenmesi

Yıl 2019, , 276 - 284, 22.04.2019
https://doi.org/10.30910/turkjans.557117

Öz

Arsenik (As) tüm organizmalar için
toksik bir metaloiddir. Bitki dokularına As alımı bitki metabolizmasını
etkileyerek çeşitli fizyolojik ve yapısal bozukluklara neden olmaktadır.
Bu çalışmada
farklı konsantrasyonlarda arsenat [As(V)] uygulamalarına maruz bırakılan kavun
(Cucumis melo L.) fidelerinin
antioksidan profili araştırılmıştır. Filtre kağıt içeren magenta kaplarına 4’er
adet tohum ekimi yapılmış ve ekimi takiben on gün sonra kavun fidelerine 10 gün
boyunca 0, 50, 100, 150 ve 200 mg L-1 di-sodyum hidrojen arsenat
heptahidrat (Na2HAsO4.7H2O) içeren
Hoagland solüsyonu uygulanmıştır. Deneme,
tesadüf parselleri deneme desenine göre 3 tekerrürlü olarak bitki büyütme
kabininde yürütülmüştür.
Kavun
fidelerine ait yaprak ve kök dokularında antioksidan sistemin anahtar
enzimlerinden olan süperoksit dismutaz (SOD) (EC 1.15.1.1) ve katalaz (CAT) (EC
1.11.1.6) enzim aktiviteleri, toplam antioksidan ve lipid peroksidasyon
seviyeleri, fotosentetik pigment (toplam klorofil ve karotenoid) ve serbest
prolin içerikleri tespit edilmiştir. Arsenatın yüksek konsantrasyonda (200 mg L-1)
yapılan uygulaması yapraklarda toplam klorofil ve karotenoid miktarının
sırasıyla %26 ve %33 azalmasına neden olmuştur. SOD ve CAT enzim aktiviteleri
ve toplam antioksidan seviyesi kök dokusunda 100, 150 ve 200 mg L-1
As(V) uygulamaları sonucu artmıştır. Yapraklarda, SOD ve CAT enzim aktiviteleri
50 ve 100 mg L-1 As(V) uygulamalarıyla artarken, 150 ve 200 mg L-1
As(V) uygulamaları sonucu enzim aktiviteleri diğer As(V) uygulamalarına kıyasla
azalmıştır. Oksidatif hasarın indikatörlerinden biri olan lipid peroksidasyonu As(V)
stresi altında yaprak ve kök dokularında kontrole nazaran artmıştır. Ayrıca,
tüm As(V) uygulamaları her iki dokuda da serbest prolin miktarının anlamlı
olacak şekilde artmasına neden olmuştur.

Kaynakça

  • Anjum, S.A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., Hassan, W., Jan, S., Khan, I., Saleem, M.F., Bajwa, A.A., Wang, L., Mahmood, A., Samad, R.A., Tung, S.A. 2016. Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research, 23: 11864-11875.
  • Anjum, S.A., Tanveer, M., Hussain, S., Ashraf, U., Khan, I., Wang, L. 2017. Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water, Air, Soil & Pollution, 228: 13.
  • Arnon, D.I. 1949. Copper enzymes in isolated choloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15.
  • Azevedo, H., Gomes, C., Fernandes, J., Loureiro, S., Santos, C. 2005. Cadmium effects on sunflower growth and photosynthesis. Journal of Plant Nutrition, 28: 2211-2220.
  • Baccouch, S., Chaoui, A., El Ferjani, E. 1998. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiology and Biochemistry, 36: 689-694.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
  • Bowler, C.M., van Montagu, M., Inze, D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43: 83-116.
  • Briat, J.F. 2002. Metal ion-activated oxidative stress and its control. Oxidative stress in plants. (ed) Inze, D. ve Montagu, M.V. New York, USA, 171-189.
  • Carbonell-Barrachina, A., Burlo Carbonell, F., Mataix Beneyto, J. 1995. Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenic on plant growth and yield. Journal of Plant Nutrition, 18: 1237-1250.
  • Carbonell-Barrachina, A.A., Aarabi, M.A., De Laune, R.D., Gambrell, R.P., Patrick, W.H. 1998. The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil, 198: 33-43.
  • Chandrakar, V., Dubey, A., Keshavkant, S. 2018. Modulation of arsenic-induced oxidative stress and protein metabolism by diphenyleneiodonium, 24-epibrassinolide and proline in Glycine max L.. Acta Botanica Croatica, 77(1): 51–61.
  • Chun-xi, L., Shu-li, F., Yun, S., Li-na, J., Xu-yang, L., Xiao-li, H. 2007. Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Science, 19: 725-732.
  • Dwivedi, S., Tripathi, R.D., Srivastava, S., Singh, R., Kumar, A., Tripathi, P., Dave, P., Rai, U.N., Chakrabarty, D., Trivedi, P.K., Tuli, R., Adhikari, B., Bag, M.K. 2010a. Arsenic accumulation profile effects trace nutrients in different rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma, 245: 113-124.
  • Dwivedi, S., Tripathi, R.D., Tripathi, P., Kumar, A., Dave, R., Mishra, S., Singh, R., Sharma, D., Rai, U., Chakrabarty, D., Trivedi, P.K., Adhikari, B., Bag, M.K., Dhankher, O.P., Tuli, R. 2010b. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environmental Science & Technology, 44 (24): 9542-9549.
  • Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4): 277-285.
  • Fallah, S.F., Afshar-Mohammadian, M. 2017. Growth, antioxidant enzymes activities and photosynthetic pigments of two rice (Oryza sativa L.) Cultivars as influenced by application of gibberellic acid and sodium arsenate. Jordan Journal of Agricultural Sciences, 13(2): 381-392.
  • Finnegan, P.M. ve Chen, W. 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Plant Physiology, 3: 1-18.
  • Ghosh, S. ve Biswas, A.K. 2017. Selenium modulates growth and thiol metabolism in wheat (Triticum aestivum L.) during arsenic stress. American Journal of Plant Sciences, 8: 363-389.
  • Hasanuzzaman, M. ve Fujita, M. 2013. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22: 584-596.
  • Hartley-Whitaker, J., Ainsworth, G., Meharg, A.A. 2001. Copper and arsenate- induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell & Environment, 24: 713-722.
  • Hoagland, D.R., Arnon, D. 1938. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circulation, 347: 1-39.
  • Knauer, K., Behra, R., Hemond, H. 1999. Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquatic Toxicology, 46: 221-230.
  • Kumari, A., Pandey, N., Pandey-Rai, S. 2017. Protection of Artemisia annua roots and leaves against oxidative stress induced by arsenic. Biologia Plantarum, 61(2): 367-377.
  • Loureiro, S., Santos, C., Pinto, G., Costa, A., Monteiro, M., Nogueira, A.J.A, Soares, A.M.V.M. 2006. Toxicity assessment of two soils from Jales Mine (Portugal) using plants: growth and biochemical parameters. Archives of Environmental Contamination and Toxicology, 50: 182-190.
  • Madhava Rao, K.V., Stresty, T.V.S. 2000. Antioxidative parameters in the seedling of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stress. Plant Science, 157: 113-128.
  • Maksymiec, W. 2007. Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29(3): 177-187.
  • Mishra, S., Jha, A.B., Dubey, R.S. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma, 248: 565-577.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
  • Noctor, G., Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and plant Molecular Biology, 49: 249-279.
  • Pandey, C., Augustine, R., Panthri, M., Zia, I., Bisht, N.C., Gupta, M. 2017. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two Brassica cultivars. Plant Physiology and Biochemistry, 111:144-154.
  • Pita-Barbosa, A., Williams, T.C.R., Loureiro, M.E. 2019. Effects of short-term arsenic exposure in Arabidopsis thaliana: tolerance versus toxicity responses. Biologia Plantarum, 63: 43-53.
  • Requejo, R., Tena, M. 2005. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry, 66: 1519-1528.
  • Sharma, I. 2012. Arsenic induced oxidative stress in plants. Biologia, 67(3): 447-453.
  • Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P.K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R.D., Tuli, R. 2009. Effect of arsenic on growth, oxidative stress and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 72: 1102–1110.
  • Simola, L.K. 1997. The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Canadian Journal of Botany, 90: 375-405.
  • Singh, H.P., Batish, D.R., Kohlo, R.K., Arora, K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regulation, 53: 65-73.
  • Singh, S., Sounderajan, S., Kumar, K., Fulzelea, D.P. 2017. Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicology and Environmental Safety, 145: 50-56.
  • Souri, Z., Karimi, N., Oliveira, L.M. 2018. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology, 39(10): 1316-1327.
  • Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., Trivedi, P.K., Tandon, P.K. 2007. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillate (L.f.) Royle. Environmental Science & Technology, 41(8): 2930-2936.
  • Srivastava, S., Sinha, P., Sharma, Y.K. 2017. Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. Journal of Plant Nutrition, 40(3): 298-306.
  • Tripathi, B.N., Gaur, J.P. 2004. Relationship between copper and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta, 219: 397-404.
  • Tripathi, R.D., Tripathi, P., Dwivedi, S., Dubey, S., Chatterjee, S., Chakrabarty, D., Trivedi, P.K. 2012. Arsenomics: omics of arsenic metabolism in plants. Frontiers in Physiology, 3: 275.
  • Tiwari, S., Sarangi, B.K. 2017. Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecological Engineering, 100: 211-218.
  • Turner, J.G., Ellis, C., Devoto, A. 2002. The jasmonate signal pathway. The Plant Cell, Supplement 2002, S153–S164.
  • Ushimaru, T., Kanematsu, S., Shibasaka, M., Tsuji, H. 1999. Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa L.) seedlings. Physiologia Plantarum, 107:181-187.
  • Xiong, L., Schumaker, K.S., Zhu, J.K. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell, Supplement 2002, S165–S183.
  • Zhang, F., Shi, W., Jin, Z., Shen, Z. 2003. Response of antioxidative enzymes in cucumber chloroplasts to toxicity. Journal of Plant Nutrition, 26: 1779-1788.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Yonca Surgun-acar Bu kişi benim

Yayımlanma Tarihi 22 Nisan 2019
Gönderilme Tarihi 6 Kasım 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Surgun-acar, Y. (2019). Arsenik Stresine Maruz Kalan Kavun (Cucumis melo L.) Fidelerinde Antioksidan Aktivitelerinin Belirlenmesi. Türk Tarım Ve Doğa Bilimleri Dergisi, 6(2), 276-284. https://doi.org/10.30910/turkjans.557117