Research Article
BibTex RIS Cite

Karbon Nanotüp Katkılı Levha Kalıplama Pestilinin AC Elektriksel İletkenliğinin ve Dielektrik Özelliklerinin İncelenmesi

Year 2021, Volume: 10 Issue: 2, 296 - 303, 07.06.2021
https://doi.org/10.17798/bitlisfen.833367

Abstract

Cam elyaf takviyeli ve doymamış polyester bazlı polimer kompozit malzemelerin iletkenlik ve dielektrik özelliklerini kontrol etmek için son yıllarda yaygın biçimde kullanılan karbon nanotüpler, yüksek potansiyelli materyallerdir. Bu çalışmada; doymamış polyester bazlı standart levha kalıplama pestili (Sheet moulding compound/SMC) ve yüzde 1,2 oranında tek duvarlı karbon nanotüp (TDKN) ile katkılanmış malzeme için, kritik çalışma parametreleri olan AC elektriksel iletkenliği, dielektrik sabiti, dielektrik kayıp faktörü ve dielektrik dağılım faktörü (kayıp tanjant) değerleri karşılaştırmalı olarak analiz edilmiştir. 50 Hz ve 100 kHz frekans aralığında yapılan ölçümlerden elde edilen sonuçlar, karbon nanotüp katkısının yalıtkan olan malzemenin direncini önemli ölçüde azalttığını ve malzemenin AC iletkenliğini önemli ölçüde arttırdığını ortaya koymuştur. Aynı zamanda katkılı numune için iletkenliğin frekans değişiminden neredeyse bağımsız olduğu da sonuçlardan görülmektedir. Bununla birlikte dielektrik özelliklerin farklı polarizasyon etkileri nedeniyle frekansa bağlı davranış sergilediği ve artan frekans değerlerinde azalma eğilimi gösterdikleri bulunmuştur.

References

  • Cooper C.A., Young R.J., Halsall M. 2001. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A, 32: 401-411.
  • Chen W., Tao X., Liu Y. 2006. Carbon nanotube-reinforced polyurethane composite fibers. Composites Science and Technology, 66: 3029-3034.
  • Shen Z., Bateman S., Wu D.Y., McMahon P., Olio M.D., Gotama J. 2009. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69: 239-244.
  • Gnidakouong R.J.N., Kim M., Park H.W., Park Y.B., Jeong H.S., Jung Y.B., Ahn S.K., Han K., Park J.M. 2013. Electromagnetic interference shielding of composites consisting of a polyester matrix and carbon nanotube-coated fiber reinforcement. Composites Part A: Applied Science and Manufacturing, 50: 73-80.
  • Ounaies Z., Park C., Wise K.E., Siochi E.J., Harrison J.S. 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 63: 1637-1646.
  • Ahmad K., Pan W., Shi S.L. 2006. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Applied Physics Letters, 89: 133122-1–3.
  • Pathania D., Singh D. 2009. A review on electrical properties of fiber reinforced polymer composites. International Journal of Theoretical & Applied Sciences, 1: 34-37.
  • Barrau S., Demont P., Peigney A., Laurent C., Lacabanne C. 2003. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 36: 5187-5194.
  • Coleman J.N., Curran S., Dalton A.B., Davey A.P., McCarthy B., Blau W. 1998. Percolation-dominated conductivity in a conjugated-polymer–carbon nanotube composite. Physical Review B–Condensed Matter Physics, 58: 7492-7495.
  • Dang Z.M., Shehzad K., Zha J.W., Hussain T., Jun N., Bai J. 2011. On refining the relationship between aspect ratio and percolation threshold of practical carbon nanotubes/polymer nanocomposites. Japanese Journal of Applied Physics, 50: 080214.
  • Yuan X. 2007. Experimental study of electrical conductivity of carbon nanotube, nanofiber buckypapers and their composites. MSc Thesis, Florida State University, Department of Industrial & Manufacturing Engineering, U.S.
  • Dyre J. Schroder T. 2000. Universality of ac conduction in disordered solids. Reviews of Modern Physics, 72: 873-892.
  • Akram M., Javed A., Rızvı T.Z. 2005. Dielectric properties of industrial polymer composite materials. Turkish Journal Physics, 29: 355-362.
  • Yang Q., Liu L., Hui D., Chipara M. 2016. Microstructure, electrical conductivity and microwave absorption properties of g-FeNi decorated carbon nanotube composites. Composites Part B, 87: 256-262.
  • Pethrick R.A., Hayward D. 2002. Real time dielectric relaxation studies of dynamic polymeric systems. Progress in Polymer Science, 27: 1983-2017.
  • Li Y., Cordovez M., Karbhari V.M. 2003. Dielectric and mechanical characterization of processing and moisture uptake effects in E-glass/epoxy composites. Composites Part B, 34: 383-390.
  • Chen Y., Wang S., Pan F., Zhang J. 2014. A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black. Journal of Nanomaterials, 2014: 1-9.
Year 2021, Volume: 10 Issue: 2, 296 - 303, 07.06.2021
https://doi.org/10.17798/bitlisfen.833367

Abstract

References

  • Cooper C.A., Young R.J., Halsall M. 2001. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A, 32: 401-411.
  • Chen W., Tao X., Liu Y. 2006. Carbon nanotube-reinforced polyurethane composite fibers. Composites Science and Technology, 66: 3029-3034.
  • Shen Z., Bateman S., Wu D.Y., McMahon P., Olio M.D., Gotama J. 2009. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69: 239-244.
  • Gnidakouong R.J.N., Kim M., Park H.W., Park Y.B., Jeong H.S., Jung Y.B., Ahn S.K., Han K., Park J.M. 2013. Electromagnetic interference shielding of composites consisting of a polyester matrix and carbon nanotube-coated fiber reinforcement. Composites Part A: Applied Science and Manufacturing, 50: 73-80.
  • Ounaies Z., Park C., Wise K.E., Siochi E.J., Harrison J.S. 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 63: 1637-1646.
  • Ahmad K., Pan W., Shi S.L. 2006. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Applied Physics Letters, 89: 133122-1–3.
  • Pathania D., Singh D. 2009. A review on electrical properties of fiber reinforced polymer composites. International Journal of Theoretical & Applied Sciences, 1: 34-37.
  • Barrau S., Demont P., Peigney A., Laurent C., Lacabanne C. 2003. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 36: 5187-5194.
  • Coleman J.N., Curran S., Dalton A.B., Davey A.P., McCarthy B., Blau W. 1998. Percolation-dominated conductivity in a conjugated-polymer–carbon nanotube composite. Physical Review B–Condensed Matter Physics, 58: 7492-7495.
  • Dang Z.M., Shehzad K., Zha J.W., Hussain T., Jun N., Bai J. 2011. On refining the relationship between aspect ratio and percolation threshold of practical carbon nanotubes/polymer nanocomposites. Japanese Journal of Applied Physics, 50: 080214.
  • Yuan X. 2007. Experimental study of electrical conductivity of carbon nanotube, nanofiber buckypapers and their composites. MSc Thesis, Florida State University, Department of Industrial & Manufacturing Engineering, U.S.
  • Dyre J. Schroder T. 2000. Universality of ac conduction in disordered solids. Reviews of Modern Physics, 72: 873-892.
  • Akram M., Javed A., Rızvı T.Z. 2005. Dielectric properties of industrial polymer composite materials. Turkish Journal Physics, 29: 355-362.
  • Yang Q., Liu L., Hui D., Chipara M. 2016. Microstructure, electrical conductivity and microwave absorption properties of g-FeNi decorated carbon nanotube composites. Composites Part B, 87: 256-262.
  • Pethrick R.A., Hayward D. 2002. Real time dielectric relaxation studies of dynamic polymeric systems. Progress in Polymer Science, 27: 1983-2017.
  • Li Y., Cordovez M., Karbhari V.M. 2003. Dielectric and mechanical characterization of processing and moisture uptake effects in E-glass/epoxy composites. Composites Part B, 34: 383-390.
  • Chen Y., Wang S., Pan F., Zhang J. 2014. A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black. Journal of Nanomaterials, 2014: 1-9.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Aykut Ilgaz 0000-0002-9632-0281

Deniz Perin 0000-0003-3697-3499

Publication Date June 7, 2021
Submission Date November 30, 2020
Acceptance Date March 21, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

IEEE A. Ilgaz and D. Perin, “Karbon Nanotüp Katkılı Levha Kalıplama Pestilinin AC Elektriksel İletkenliğinin ve Dielektrik Özelliklerinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, pp. 296–303, 2021, doi: 10.17798/bitlisfen.833367.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS