BibTex RIS Cite

Investigation of Projected Changes for Near Future Air Temperature and Precipitation Climatology of Turkey and Surrounding Regions by Using the Regional Climate Model RegCM4.3.5

Year 2014, Volume: 23 Issue: 1, 1 - 24, 01.06.2014

Abstract

In this study, projected future changes for the period of 2020 – 2050 in mean air temperature and precipitation climatology and year-to-year variability with respect to the control period of 1970 – 2000 were investigated for the domain of Turkey via regional climate model simulations. In order to investigate the projected changes in near future climate conditions, Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was driven by three different global climate models. HadGEM2 global climate model of the Met Office Hadley Centre, MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology, GFDL-ESM2M global climate model of the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory were dynamically downscaled to 50 km for Turkey and its surrounding region. The projections were performed based on the RCP4.5 and the RCP8.5 emission scenarios of the Intergovernmental Panel on Climate Change (IPCC). According to the model results, there will be an increase between 0.5 °C and 4 °C in mean air temperatures of Turkey for the period of 2020 – 2050 with respect to the period of 1970 – 2000. This warming will be more severe in warm seasons than cold seasons. Precipitation decreases varying from approximately 0.4 mm/day to 1.2 mm/day in precipitation climatology of Turkey are expected to occur in all seasons particularly over the southern and western regions of the country dominated by the Mediterranean climate, according to the regional climate model results.

Keywords: Turkey, climate change, emission scenarios, regional climate model simulation,
future climate projections.

References

  • Anthes, R.A. 1977. ‘A cumulus parameterization scheme utilizing a one-dimensional cloud model’. Monthly Weather Review 105, 270–286.
  • Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, R. Richels. 2007. ‘Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations’. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington, 7 DC., USA, 154 pp.
  • Collins, W.J., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, T. Hinton, C. D. Jones, S. Liddicoat, G. Martin, F. O'Connor, J. Rae, C. Senior, I. Totterdell, S. Woodward, T. Reichler, J. Kim. 2008. ‘Evaluation of the HadGEM2 model’. Met Office Hadley Centre Technical Note no. HCTN 74.
  • Dee, D. P., with 35 co-authors. 2011. ‘ The ERA-Interim reanalysis: configuration and performance of the data assimilation system’. Quart. J. R. Meteorol. Soc., 137, 553-597.
  • Detlef P. van Vuuren, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, George C. Hurtt, Tom Kram, Volker Krey, Jean-Francois Lamarque, Toshihiko Masui, Malte Meinshausen, Nebojsa Nakicenovic, Steven J. Smith, Steven K. Rose. 2011. ‘ The representative concentration pathways: an overview’, Climatic Change 109:5–31, DOI 10.1007/s10584-011- 0148-z.
  • Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. 1993. ‘Biosphere-atmosphere transfer scheme (bats) version 1e as coupled to the ncar community climate model’. Technical Note 3871STR, 72 pp., National Center for Atmospheric Research.
  • Dunne, John P., and Coauthors. 2012. ‘GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics’. J. Climate, 25, 6646–6665, doi: http://dx.doi.org/10.1175/JCLI-D-11-00560.1.
  • Dunne, John P., and Coauthors. 2013. ‘GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics’. J. Climate, 26, 2247–2267, doi: http://dx.doi.org/10.1175/JCLI-D-12-00150.1.
  • Emanuel, K.A. 1991. ‘A scheme for representing cumulus convection in large-scale models’. Journal of the Atmospheric Sciences 48, 2313–2335.
  • Emanuel, K.A., Zivkovic-Rothman, M. 1999. ‘Development and evaluation of a convection scheme for use in climate models’. Journal of the Atmospheric Sciences 56, 1766–1782.
  • Giorgetta, M. A., et al. 2013. ‘Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5’. J. Adv. Model. Earth Syst., 5, 572–597, doi:10.1002/jame.20038.
  • Giorgi, F., Shields, C. 1999. ‘Tests of precipitation parameterizations available in the latest version of the

RegCM4.3.5 Bölgesel İklim Modelini Kullanarak Türkiye ve Çevresi Bölgelerin Yakın Gelecekteki Hava Sıcaklığı ve Yağış Klimatolojileri İçin Öngörülen Değişikliklerin İncelenmesi

Year 2014, Volume: 23 Issue: 1, 1 - 24, 01.06.2014

Abstract

Bu çalışmada 1970 – 2000 referans dönemi iklimine göre 2020 – 2050 dönemi için Türkiye’nin ortalama hava sıcaklığı ve yağış klimatolojilerinde öngörülen değişiklikler, bölgesel iklim modeli benzetimleri kullanılarak araştırıldı. Yakın gelecekteki iklim koşullarında öngörülen değişimleri incelemek için Uluslararası Teorik Fizik Merkezi’ne ait olan RegCM4.3.5 isimli bölgesel iklim modeli üç farklı küresel modelden yararlanılarak koşuldu. Max Planck Meteoroloji Enstitüsü’ne ait MPI-ESM-MR, Met Office Hadley Merkezi’ne ait HadGEM2 ve Amerikan Ulusal Okyanus ve Atmosfer Dairesi Jeofiziksel Akışkanlar Dinamiği Laboratuvarı’na ait GFDL-ESM2M modelleri Türkiye ve çevresi için dinamik olarak 50 km’ye alt ölçeklendirildi. Öngörüler, Hükümetlerarası İklim Değişikliği Paneli’nin (IPCC) RCP4.5 ve RCP8.5 salım senaryolarına göre gerçekleştirildi. Model sonuçlarına göre, Türkiye’de ortalama hava sıcaklıklarında 1970 – 2000 dönemine göre 2020 – 2050 döneminde 0.5 °C ile 4 °C arasında değişen artışlar olacaktır. Bu artış, sıcak mevsimlerde soğuk mevsimlere göre daha fazla olacaktır. Türkiye’nin yağış klimatolojisinde ise, bölgesel iklim modeli sonuçlarına göre, özellikle ülkenin Akdeniz ikliminin egemen olduğu batı ve güney bölgelerinde ve tüm mevsimlerde, yaklaşık 0.4 mm/gün ile 1.2 mm/gün arasında değişen belirgin yağış azalışlarının oluşması beklenir.

Anahtar kelimeler: Türkiye, iklim değişikliği, salım senaryoları, bölgesel iklim modeli benzetimi, gelecek iklim kestirimi.

 

References

  • Anthes, R.A. 1977. ‘A cumulus parameterization scheme utilizing a one-dimensional cloud model’. Monthly Weather Review 105, 270–286.
  • Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, R. Richels. 2007. ‘Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations’. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington, 7 DC., USA, 154 pp.
  • Collins, W.J., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, T. Hinton, C. D. Jones, S. Liddicoat, G. Martin, F. O'Connor, J. Rae, C. Senior, I. Totterdell, S. Woodward, T. Reichler, J. Kim. 2008. ‘Evaluation of the HadGEM2 model’. Met Office Hadley Centre Technical Note no. HCTN 74.
  • Dee, D. P., with 35 co-authors. 2011. ‘ The ERA-Interim reanalysis: configuration and performance of the data assimilation system’. Quart. J. R. Meteorol. Soc., 137, 553-597.
  • Detlef P. van Vuuren, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, George C. Hurtt, Tom Kram, Volker Krey, Jean-Francois Lamarque, Toshihiko Masui, Malte Meinshausen, Nebojsa Nakicenovic, Steven J. Smith, Steven K. Rose. 2011. ‘ The representative concentration pathways: an overview’, Climatic Change 109:5–31, DOI 10.1007/s10584-011- 0148-z.
  • Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. 1993. ‘Biosphere-atmosphere transfer scheme (bats) version 1e as coupled to the ncar community climate model’. Technical Note 3871STR, 72 pp., National Center for Atmospheric Research.
  • Dunne, John P., and Coauthors. 2012. ‘GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics’. J. Climate, 25, 6646–6665, doi: http://dx.doi.org/10.1175/JCLI-D-11-00560.1.
  • Dunne, John P., and Coauthors. 2013. ‘GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics’. J. Climate, 26, 2247–2267, doi: http://dx.doi.org/10.1175/JCLI-D-12-00150.1.
  • Emanuel, K.A. 1991. ‘A scheme for representing cumulus convection in large-scale models’. Journal of the Atmospheric Sciences 48, 2313–2335.
  • Emanuel, K.A., Zivkovic-Rothman, M. 1999. ‘Development and evaluation of a convection scheme for use in climate models’. Journal of the Atmospheric Sciences 56, 1766–1782.
  • Giorgetta, M. A., et al. 2013. ‘Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5’. J. Adv. Model. Earth Syst., 5, 572–597, doi:10.1002/jame.20038.
  • Giorgi, F., Shields, C. 1999. ‘Tests of precipitation parameterizations available in the latest version of the
There are 12 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

M. Tufan Turp

Tuğba Öztürk This is me

Murat Türkeş This is me

M. Levent Kurnaz

Publication Date June 1, 2014
Submission Date April 28, 2015
Published in Issue Year 2014 Volume: 23 Issue: 1

Cite

APA Turp, M. . T., Öztürk, T., Türkeş, M., Kurnaz, M. . L. (2014). RegCM4.3.5 Bölgesel İklim Modelini Kullanarak Türkiye ve Çevresi Bölgelerin Yakın Gelecekteki Hava Sıcaklığı ve Yağış Klimatolojileri İçin Öngörülen Değişikliklerin İncelenmesi. Ege Coğrafya Dergisi, 23(1), 1-24.