Research Article
BibTex RIS Cite

Bazı Bioadsorbanların Sulu Çözeltiden Cr(VI) Adsorpsiyonunda Kullanımının Araştırılması

Year 2021, Issue: 31, 481 - 486, 31.12.2021
https://doi.org/10.31590/ejosat.1008706

Abstract

Ağır metaller, çevresel açıdan su ekosistemlerine yönelik en büyük tehditlerden biridir. Ağır metaller içeren sucul ekosistemler, çeşitli endüstrilerde kullanıldıktan sonra bu endüstrilere ulaşması nedeniyle çevre kirliliğine neden olmaktadır. Bu çalışmada şeftali çekirdeğinin (PK) biyoadsorban olarak kullanımı ve sulu çözeltiden Cr (VI) adsorpsiyonunda kullanılabilirliği araştırılmıştır. Böylece ekonomik değeri düşük olan bu malzemelerin biyoadsorban olarak kullanım olanakları araştırılarak ekonomik değerlerinin arttırılması amaçlanmıştır. Öte yandan, sucul ekosistemlerde kirletici tehditler olan ağır metallerin bu malzemelerle giderilerek hem sucul ortamın hem de insan sağlığının korunmasına ve dolayısıyla çevre kirliliğinin önlenmesine katkı sağlanması hedeflenmektedir. Çalışmada sentetik olarak hazırlanmış Cr(VI) içeren atıksu kullanılmıştır. Adsorban olarak kullanılan malzeme 105 °C'de 24 saat etüvde kurutulduktan sonra öğütülmüş ve deneylerde 35 mesh elek boyutunda malzemeler kullanılmıştır. Adsorbanın Cr(VI) konsantrasyonunu ve karakterizasyonunu belirlemek için Atomik Adsorpsiyon Spektrofotometresi (AAS), Fourier Dönüşümü Kızılötesi Spektroskopisi (FT-IR), Brunauer-Emmett-Teller İzoterm Modeli (BET) ve Taramalı Elektron Mikroskobu (SEM) kullanılmıştır. Ham olarak yapılan ön deneylerde elde edilen düşük giderim verimi sebebiyle şeftali çekirdeğine aktivasyon işlemi uygulanmıştır. Aktivasyon işlemlerinden sonra gerçekleştirilen adsorpsiyon işlemlerinden PK ile verimi %93 olmuştur. Adsorbentteki FT-IR sonuçlarının ile adsorbsiyonun kimyasal adsorpsiyon olarak değerlendirilebileceği sonucuna varılmıştır. BET sonuçları adsorpsiyon işleminden sonra malzemenin yüzey alanının azaldığını gösterirken, SEM sonuçları ile adsorban yüzeyinin heterojen olduğu değerlendirilmiştir. Çalışmada optimum koşullar altında pH 2, 0,5 g adsorban miktarı ve 5 saat alıkonma süresinde maksimum verime ulaşılmıştır. Optimum koşullar altında 0,5 g PK ile birim adsorban başına 0,738 mg.g-1 kaldırma kapasitesi elde edildiği gözlemlenmiştir. Adsorpsiyon izoterm modellerinden Langmuir izoterm modeline uygun olduğu görülmüştür. Reaksiyonun kinetik değerlendirmesinde yalancı ikinci dereceden hız kinetiğine uygunduğu sonucuna ulaşılmıştır. Tüm sonuçlar, özellikle aktivasyon süreci nedeniyle, Cr(VI) gideriminde PK'nin kullanılabilirliğini ortaya koymuştur.

Supporting Institution

Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2019-3-TP2-3712

Thanks

Bu tez, Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından 2019-3-TP2-3712 nolu proje olarak desteklenmektedir. Destekleri için Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür ediyorum.

References

  • Benefield, L., Judkins, J., & B.L., W. (1982). Process chemistry for water and wastewater treatment. New Jersey: Prentice Hall, Inc., Englewood Cliffs.
  • Bradl, H. (2002). Heavy Metals in the Environment: Origin, Interaction and Remediation. London: Academic Press.
  • Filiz, E. (2007). Doğal Kaynaklardan Elde Edilen Adsorbanlarla Sularda Ağır Metal Giderimi. İstanbul: Yayımlanmamış yüksek lisans tezi, İstanbul Teknik Üniversitesi.
  • Fu, F., & QiWang, Q. (2011). Removal of heavy metal ions from wastewaters. Journal of Environmental Management, 92, 407-418.
  • Gupta, V., & Rastogi, A. (2009a). Biosorption of Hexavalent Chromium by raw and AcidTreated Green Alga Oedogonium hatei from Aqueous Solutions. Journal of Hazardous Materials, 163, 396-402.
  • Gupta, V., Ali, I., Saleh, T., Siddiqui, M. N., & Agarwal, S. (2013). Chromium Removal from Water by Activated Carbon Developed from Waste Rubber Tires. Environmental Science Pollution Research, 20, 1261-1268.
  • Gupta, V., Goyal, R. N., & Sharma, R. (2009b). NovelPVCmembranebased alizarin Sensor and its application; Determination of Vanadium, Zirconium and Molybdenum. International Journal Electrochemical Science, 4, 156-172.
  • Gupta, V., Rastogi, A., & Nayak, A. (2010). Adsorption Studies on the Removal of Hexavalent Chromium from Aqueous. Journal of Colloid and Interface Science, 342(1), 135-141.
  • Ho, Y., & McKay, G. (1999). Pseudo-Second Order Model for Sorption Processes. Process Biochemical, 34, 451-465.
  • JParga, R., Cocke, D., Valverde, V., Gomes, .., Kesmez, M. H., Moreno, H., . . . Mencer, D. (2005). Characterization of Electrocoagulation for Removal Chromium and Arsenic. Chemical. Müh. Technology, 28(5), 605-612.
  • Kang, S., Le, J., Moon, S., & Kim, K. (2004). Competitive Adsorption Characteristics of Co2+, Ni2+, and Competitive Adsorption Characteristics of Co2+, Ni2+, and Wastewater. Chemosphere, 56(2), 141-147.
  • Kocabaş, B. (2015). Yumurta kabuğu-kitosan modifiye ürünü kullanılarak atıksulardan Brilliant Blue R boyarmaddesinin adsorpsiyon yöntemi ile gideriminin incelenmesi. Çorum: Yayımlanmamış yüksek lisans tezi, Hitit Üniversitesi Fen Bilimleri Enstitüsü.
  • Ku, Y., & Jung, I. L. (2001). Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide. Water Research, 35, 135-142.
  • Metcalf, L., & H.P., E. (2003). Wastewater engineering: Treatment and reuse. New York, USA: McGraw-Hill.
  • Rana, P., N., M., & Rajagopal, C. (2004). Electrochemical Removal of Chromium from Wastewater by using Carbon Aerogel Electrodes. Water Research, 38, 2811-2820.
  • Rutland, F. (1991). Environmental Compatibility of Chromiumcontaining Tannery and Other Leather Product Wastes at Land Disposal Sites. Journal Am Leather Chemical Assoc, 86, 364-375.
  • Saleh, M., Yalvaç, M., & Arslan, H. (2019). Optimization of Remazol Brilliant Blue R Adsorption ontoXanthium Italicum using the Response Surface Method. Karbala International Journal of Modern Science, 5(1).
  • Saleh, M., Yalvaç, M., Arslan, H., & Gün, M. (2019). Malachite Green Dye Removal from Aqueous Solutions Using Invader Centauera Solstitialis Plant and Optimization by Responce Surface Method: Kinetic, Isotherm, and Thermodynamic Study. European Journal of Science and Technology, 17, 755-768.
  • Sawyer, C., & P.L., M. (1978). Chemistry for environmental engineering. McGraw Hill Inc., 519. Shakoor, S., & Nasar, A. (2018). Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundwater for Sustainable Development, 30-38.
  • Shouli, B., Liangyuan, C., Dianqing, L., Wensheng, Y., Pengcheng, Y. Z., Aifan, C., & Liu, C. (2010). Sol Gel Synthesized Zinc Oxide Nanorods on Single And Codoped ZnO Seed Layer Templates: Morphological, Optical and Electrical Properties. Sensors and Actuators B: Chemical, 146, 129-137.
  • Tchounwou, P., Yedjou, C. G., Patlolla, A. K., & Sutton, D. (2012). Heavy Metals Toxicity and the Environment NIH-RCMI Center for Environmental Health. College of Science, Engineering and Technology, Jackson State University, USA.
  • Tosun, İ. (2009). Alünit-potasyum klorür karışımı termal bozunma ürünün sulu çözeltilerden boya ve fosfat gideriminde kullanılabilirliği. Eskişehir: Yayımlanmamış doktora tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü.

Investigation of The Uses of Some Bioadsorbans in Cr(VI) Removal from Water Solution

Year 2021, Issue: 31, 481 - 486, 31.12.2021
https://doi.org/10.31590/ejosat.1008706

Abstract

Heavy metals are one of the biggest threats to aquatic ecosystems from an environmental perspective. Aquatic ecosystems containing heavy metals because of reaching these industries after being used in various industries cause environmental pollution. In this study, the use of peach kernel (PK) as a bioadsorbent and its usability in the adsorption of Cr (VI) from an aqueous solution was investigated. Thus, it was desired to increase the economic value of these materials, which have low economic value, by investigating the possibilities of using them as bioadsorbent. On the other hand, it is aimed to contribute to the protection of both the aquatic environment and human health, and therefore to the prevention of environmental pollution, by removing heavy metals, which are polluting threats in aquatic ecosystems, with these materials. In the study, synthetically prepared wastewater containing Cr (VI) was used. These materials used as adsorbent were ground after drying in an oven at 105 °C for 24 hours and materials with 35 mesh sieve size were used in the experiments. Atomic Adsorption Spectrophotometer (AAS), Fourier Transform Infrared Spectroscopy (FT-IR), Brunauer-Emmett-Teller Isotherm Model (BET) and Scanning Electron Microscope (SEM) were used to determine the Cr (VI) concentration and characterization of the adsorbent. The low rate of removal efficiency obtained in the preliminary experiments conducted as raw led to the application of activation processes to the peach kernel. From the adsorption processes performed after the activation processes, the PK yield was 93%. It was concluded that the FT-IR results in the adsorbent can be evaluated as chemical adsorption. BET results showed that the surface area of the material decreased after the adsorption process, while SEM results were evaluated that the adsorbent surface was heterogeneous. In the study, maximum efficiency was reached under optimum conditions at pH 2, 0.5 g adsorbent amount, and 5 hours retention time. It has been observed that a removal capacity of 0.738 mg.g-1 per unit adsorbent was obtained with 0.5 g PK under optimum conditions. It was found to be suitable for the Langmuir isotherm model, which is one of the adsorption isotherm models. In the kinetic evaluation of the reaction, it was suitable for pseudo-second-order rate kinetics. All results revealed the usability of PK in Cr (VI) removal, especially because of the activation process.

Project Number

2019-3-TP2-3712

References

  • Benefield, L., Judkins, J., & B.L., W. (1982). Process chemistry for water and wastewater treatment. New Jersey: Prentice Hall, Inc., Englewood Cliffs.
  • Bradl, H. (2002). Heavy Metals in the Environment: Origin, Interaction and Remediation. London: Academic Press.
  • Filiz, E. (2007). Doğal Kaynaklardan Elde Edilen Adsorbanlarla Sularda Ağır Metal Giderimi. İstanbul: Yayımlanmamış yüksek lisans tezi, İstanbul Teknik Üniversitesi.
  • Fu, F., & QiWang, Q. (2011). Removal of heavy metal ions from wastewaters. Journal of Environmental Management, 92, 407-418.
  • Gupta, V., & Rastogi, A. (2009a). Biosorption of Hexavalent Chromium by raw and AcidTreated Green Alga Oedogonium hatei from Aqueous Solutions. Journal of Hazardous Materials, 163, 396-402.
  • Gupta, V., Ali, I., Saleh, T., Siddiqui, M. N., & Agarwal, S. (2013). Chromium Removal from Water by Activated Carbon Developed from Waste Rubber Tires. Environmental Science Pollution Research, 20, 1261-1268.
  • Gupta, V., Goyal, R. N., & Sharma, R. (2009b). NovelPVCmembranebased alizarin Sensor and its application; Determination of Vanadium, Zirconium and Molybdenum. International Journal Electrochemical Science, 4, 156-172.
  • Gupta, V., Rastogi, A., & Nayak, A. (2010). Adsorption Studies on the Removal of Hexavalent Chromium from Aqueous. Journal of Colloid and Interface Science, 342(1), 135-141.
  • Ho, Y., & McKay, G. (1999). Pseudo-Second Order Model for Sorption Processes. Process Biochemical, 34, 451-465.
  • JParga, R., Cocke, D., Valverde, V., Gomes, .., Kesmez, M. H., Moreno, H., . . . Mencer, D. (2005). Characterization of Electrocoagulation for Removal Chromium and Arsenic. Chemical. Müh. Technology, 28(5), 605-612.
  • Kang, S., Le, J., Moon, S., & Kim, K. (2004). Competitive Adsorption Characteristics of Co2+, Ni2+, and Competitive Adsorption Characteristics of Co2+, Ni2+, and Wastewater. Chemosphere, 56(2), 141-147.
  • Kocabaş, B. (2015). Yumurta kabuğu-kitosan modifiye ürünü kullanılarak atıksulardan Brilliant Blue R boyarmaddesinin adsorpsiyon yöntemi ile gideriminin incelenmesi. Çorum: Yayımlanmamış yüksek lisans tezi, Hitit Üniversitesi Fen Bilimleri Enstitüsü.
  • Ku, Y., & Jung, I. L. (2001). Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide. Water Research, 35, 135-142.
  • Metcalf, L., & H.P., E. (2003). Wastewater engineering: Treatment and reuse. New York, USA: McGraw-Hill.
  • Rana, P., N., M., & Rajagopal, C. (2004). Electrochemical Removal of Chromium from Wastewater by using Carbon Aerogel Electrodes. Water Research, 38, 2811-2820.
  • Rutland, F. (1991). Environmental Compatibility of Chromiumcontaining Tannery and Other Leather Product Wastes at Land Disposal Sites. Journal Am Leather Chemical Assoc, 86, 364-375.
  • Saleh, M., Yalvaç, M., & Arslan, H. (2019). Optimization of Remazol Brilliant Blue R Adsorption ontoXanthium Italicum using the Response Surface Method. Karbala International Journal of Modern Science, 5(1).
  • Saleh, M., Yalvaç, M., Arslan, H., & Gün, M. (2019). Malachite Green Dye Removal from Aqueous Solutions Using Invader Centauera Solstitialis Plant and Optimization by Responce Surface Method: Kinetic, Isotherm, and Thermodynamic Study. European Journal of Science and Technology, 17, 755-768.
  • Sawyer, C., & P.L., M. (1978). Chemistry for environmental engineering. McGraw Hill Inc., 519. Shakoor, S., & Nasar, A. (2018). Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundwater for Sustainable Development, 30-38.
  • Shouli, B., Liangyuan, C., Dianqing, L., Wensheng, Y., Pengcheng, Y. Z., Aifan, C., & Liu, C. (2010). Sol Gel Synthesized Zinc Oxide Nanorods on Single And Codoped ZnO Seed Layer Templates: Morphological, Optical and Electrical Properties. Sensors and Actuators B: Chemical, 146, 129-137.
  • Tchounwou, P., Yedjou, C. G., Patlolla, A. K., & Sutton, D. (2012). Heavy Metals Toxicity and the Environment NIH-RCMI Center for Environmental Health. College of Science, Engineering and Technology, Jackson State University, USA.
  • Tosun, İ. (2009). Alünit-potasyum klorür karışımı termal bozunma ürünün sulu çözeltilerden boya ve fosfat gideriminde kullanılabilirliği. Eskişehir: Yayımlanmamış doktora tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hüdaverdi Arslan 0000-0002-3053-6944

Nusret Çalışkan This is me 0000-0003-4061-5846

Melis Gün 0000-0001-7982-6013

Project Number 2019-3-TP2-3712
Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Arslan, H., Çalışkan, N., & Gün, M. (2021). Investigation of The Uses of Some Bioadsorbans in Cr(VI) Removal from Water Solution. Avrupa Bilim Ve Teknoloji Dergisi(31), 481-486. https://doi.org/10.31590/ejosat.1008706