The paper aims to determine the physical properties (density) and calorific ones (calorific value and ash content) of pellets made of spruce and beech sawdust, thermally treated at temperatures of 170, 190 and 210 °C, for 1, 2 and 3 hours. After the thermal treatment of the sawdust, its mass loss was obtained, and compressed pellets were obtained under laboratory conditions. The results obtained from sawdust treatment indicated a weak increase in calorific value, depending on the temperature and the thermal treatment times. The final conclusion of the paper is that the thermal treatment improves the caloric properties of sawdust pellets, the beech sawdust having a higher capacity for torrefaction and compaction related to spruce sawdust.
[1]. Bridgwater AV. Review of Fast Pyrolysis of Biomass and Product Upgrading, Biomass bioenergy, vol.38, pp.68-94, 2012.
[2]. Boutin JP, Gervasoni G, Help R, Seyboth K, Lamers P, Ratton M et al. Alternative Energy Sources in Transition Countries. The Case of Bio-energy in Ukraine. Environ Eng Manag J., vol.6, nr.1, pp 3-11, 2007.
[3]. Demirbas A. Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. Energ Convers Manag , vol. 42, nr 11, pp.1357-137878, 2001.
[4]. Garcia AM, Barcia BMJ, Diaz DMA, Hernandez JA. Preparation of Active Carbon from a Comercial Holm-Oak Charcoal: Study of Micro-and Meso-porosity. Wood Sci Technol, vol.37, nr.5, pp.385-394, 2004.
[5]. Gavrilescu D. Energy from Biomass in Pulp and Paper Mills. Environ Eng Manag J.,vol. 7(5),pp.537-546, 2008.
[6]. Gavrilescu M. Biomass Power for Energy and Sustainable Development. Environ Eng Manag J. vol.7, nr.5, pp.617-640, 2008.
[7]. Kaliyan N, Morey RV. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenerg ; vol.33, nr.3, pp.337-359, 2009.
[8]. Kuhlman T, Diogo V, Koomen E. Exploring the Potential of Reed as a Bioenergy Crop in the Netherlands. Biomass Bioenerg ,vol. 55, pp.41-52, 2013.
[9]. Lakó J, Hancsók J, Yuzhakova T, Marton G, Utasi A, Rédey A. Biomass – a Source of Chemicals and Energy for Sustainable Development. Environ Eng Manag J. vol.7, nr.5, pp.499-509, 2008.
[10]. Lei Shang, Jesper Ahrenfeldt, Jens Kai Holn, s.a. Changes of chemical and mechanical behavior of torrefied weat straw, Revista Biomass and Bioenergy vol.40, pp.63-73, 2012
[11]. Lunguleasa A. Compaction Coefficient of Wooden Briquettes Used as Renewable Fuel, Environ Eng Manag J.,vol. 10, nr.9, pp.1263-1268, 2011.
[12]. Okello C, Pindozzi S, Faugno S, Boccia L. Bioenergy Potential of Agricultural and Forest Residues in Uganda, Biomass Bioenerg vol. 56, pp.515-525, 2013.
[13]. Plištil D, Brožek M, Malaták J, Roy A, Hutla P. Mechanical Characteristics of Standard Fuel Briquettes on Biomass Basis, Res Agr Eng .vol 51, nr.2, pp 66-72, 2005.
[14]. Sola OC, Atis CD. The Effects of Pyrite Ash on the Compressive Strength Properties of Briquettes, KSCE Journal of Civil Engineering,vol 16, nr. 7, pp.1225-1229, 2012.
[15]. Teuch O, Hofeanuer A, Troger F, From J. Basic Properties of Specific Wood Based Materials Carbonised in a Nitrogen Atmosphere, Wood Sci Technol ,vol. 38, nr.3, pp.323-333, 2004.
[16]. Verna VK, Bram S, de Ruyck J. Small Scale Biomass Systems: Standards, Quality, Labeling and Market Driving Factors – An Outllook. Biomass Bioenerg , vol. 33, nr.10, pp.1393-1402, 2009.
[17]. Zarringhalam MA, Gholipour ZN, Dorosti S, Vaez M. Physical properties of solid fuel briquettes from bituminous coal waste and biomass, Journal of Coal Science and Engineering (China), vol.15, nr.8, pp 1254-1260, 2011.
Year 2019,
Volume: 2 Issue: 1, 26 - 33, 31.03.2019
[1]. Bridgwater AV. Review of Fast Pyrolysis of Biomass and Product Upgrading, Biomass bioenergy, vol.38, pp.68-94, 2012.
[2]. Boutin JP, Gervasoni G, Help R, Seyboth K, Lamers P, Ratton M et al. Alternative Energy Sources in Transition Countries. The Case of Bio-energy in Ukraine. Environ Eng Manag J., vol.6, nr.1, pp 3-11, 2007.
[3]. Demirbas A. Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. Energ Convers Manag , vol. 42, nr 11, pp.1357-137878, 2001.
[4]. Garcia AM, Barcia BMJ, Diaz DMA, Hernandez JA. Preparation of Active Carbon from a Comercial Holm-Oak Charcoal: Study of Micro-and Meso-porosity. Wood Sci Technol, vol.37, nr.5, pp.385-394, 2004.
[5]. Gavrilescu D. Energy from Biomass in Pulp and Paper Mills. Environ Eng Manag J.,vol. 7(5),pp.537-546, 2008.
[6]. Gavrilescu M. Biomass Power for Energy and Sustainable Development. Environ Eng Manag J. vol.7, nr.5, pp.617-640, 2008.
[7]. Kaliyan N, Morey RV. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenerg ; vol.33, nr.3, pp.337-359, 2009.
[8]. Kuhlman T, Diogo V, Koomen E. Exploring the Potential of Reed as a Bioenergy Crop in the Netherlands. Biomass Bioenerg ,vol. 55, pp.41-52, 2013.
[9]. Lakó J, Hancsók J, Yuzhakova T, Marton G, Utasi A, Rédey A. Biomass – a Source of Chemicals and Energy for Sustainable Development. Environ Eng Manag J. vol.7, nr.5, pp.499-509, 2008.
[10]. Lei Shang, Jesper Ahrenfeldt, Jens Kai Holn, s.a. Changes of chemical and mechanical behavior of torrefied weat straw, Revista Biomass and Bioenergy vol.40, pp.63-73, 2012
[11]. Lunguleasa A. Compaction Coefficient of Wooden Briquettes Used as Renewable Fuel, Environ Eng Manag J.,vol. 10, nr.9, pp.1263-1268, 2011.
[12]. Okello C, Pindozzi S, Faugno S, Boccia L. Bioenergy Potential of Agricultural and Forest Residues in Uganda, Biomass Bioenerg vol. 56, pp.515-525, 2013.
[13]. Plištil D, Brožek M, Malaták J, Roy A, Hutla P. Mechanical Characteristics of Standard Fuel Briquettes on Biomass Basis, Res Agr Eng .vol 51, nr.2, pp 66-72, 2005.
[14]. Sola OC, Atis CD. The Effects of Pyrite Ash on the Compressive Strength Properties of Briquettes, KSCE Journal of Civil Engineering,vol 16, nr. 7, pp.1225-1229, 2012.
[15]. Teuch O, Hofeanuer A, Troger F, From J. Basic Properties of Specific Wood Based Materials Carbonised in a Nitrogen Atmosphere, Wood Sci Technol ,vol. 38, nr.3, pp.323-333, 2004.
[16]. Verna VK, Bram S, de Ruyck J. Small Scale Biomass Systems: Standards, Quality, Labeling and Market Driving Factors – An Outllook. Biomass Bioenerg , vol. 33, nr.10, pp.1393-1402, 2009.
[17]. Zarringhalam MA, Gholipour ZN, Dorosti S, Vaez M. Physical properties of solid fuel briquettes from bituminous coal waste and biomass, Journal of Coal Science and Engineering (China), vol.15, nr.8, pp 1254-1260, 2011.
Spirchez, C., Ayrilmis, N., Lunguleasa, A., Croitoru, C., et al. (2019). Some properties of pellets made of spruce and beech torrefied sawdust. Environmental Research and Technology, 2(1), 26-33.
AMA
Spirchez C, Ayrilmis N, Lunguleasa A, Croitoru C, Pruna M. Some properties of pellets made of spruce and beech torrefied sawdust. ERT. March 2019;2(1):26-33.
Chicago
Spirchez, Cosmin, Nadir Ayrilmis, Aurel Lunguleasa, Catalin Croitoru, and Mariana Pruna. “Some Properties of Pellets Made of Spruce and Beech Torrefied Sawdust”. Environmental Research and Technology 2, no. 1 (March 2019): 26-33.
EndNote
Spirchez C, Ayrilmis N, Lunguleasa A, Croitoru C, Pruna M (March 1, 2019) Some properties of pellets made of spruce and beech torrefied sawdust. Environmental Research and Technology 2 1 26–33.
IEEE
C. Spirchez, N. Ayrilmis, A. Lunguleasa, C. Croitoru, and M. Pruna, “Some properties of pellets made of spruce and beech torrefied sawdust”, ERT, vol. 2, no. 1, pp. 26–33, 2019.
ISNAD
Spirchez, Cosmin et al. “Some Properties of Pellets Made of Spruce and Beech Torrefied Sawdust”. Environmental Research and Technology 2/1 (March 2019), 26-33.
JAMA
Spirchez C, Ayrilmis N, Lunguleasa A, Croitoru C, Pruna M. Some properties of pellets made of spruce and beech torrefied sawdust. ERT. 2019;2:26–33.
MLA
Spirchez, Cosmin et al. “Some Properties of Pellets Made of Spruce and Beech Torrefied Sawdust”. Environmental Research and Technology, vol. 2, no. 1, 2019, pp. 26-33.
Vancouver
Spirchez C, Ayrilmis N, Lunguleasa A, Croitoru C, Pruna M. Some properties of pellets made of spruce and beech torrefied sawdust. ERT. 2019;2(1):26-33.