Research Article
BibTex RIS Cite

A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks

Year 2021, Volume: 34 Issue: 4, 1163 - 1177, 01.12.2021
https://doi.org/10.35378/gujs.769726

Abstract

Design and investigation of a polarization-insensitive nine-band tunable metamaterial absorber at THz frequencies with equal to or more than 90% absorption ratio in all of the bands are reported. The tunable metamaterial absorber consists of four isosceles triangle patches with four U-shaped cut paths on top of an indium antimonide substrate, which has a fully metallic ground plane at the backside. Numerical analyses show that the metamaterial absorber has wide-angle characteristics under transverse-electric and transverse-magnetic modes. The permittivity of indium antimonide is highly dependent on temperature variations due to its temperature-dependent intrinsic carrier density, leading to shift of nine absorption peak frequencies upon change of environment temperature. Broadband switching of nine absorption peak frequencies with maximum 71.5% shift ratio between 190 K and 230 K is obtained. Temperature sensing performance of the metamaterial absorber is further evaluated and the sensitivities are found to be 11.5 GHz/K, 9.2 GHz/K, 8.3 GHz/K, 7.6 GHz/K, 7.0 GHz/K, 6.2 GHz/K, 5.3 GHz/K, 4.5 GHz/K and 4.2 GHz/K, from the first to ninth absorption band, respectively. Therefore, the proposed nine-band metamaterial absorber sensor has great potential in sensitive and accurate temperature measurement, absorption tuning in optoelectronic applications and as frequency selective thermal emitters.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK), Ankara University

Project Number

117E5074 ve 17B0443006

Thanks

We gratefully acknowledge the financial support by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 117E504 and Scientific Research Projects of Ankara University (BAP) under Grant No. 17B0443006.

References

  • 1) Sievenpiper, D., Zhang, L., Jimenez Broas, R.F., Alexopolous, N.G. and Yablonovitch, E., “High-impedance electromagnetic surfaces with a forbidden frequency band”, IEEE Trans. Microw. Theory Tech., 47(11):2059–2074 (1999). doi: 10.1109/22.798001
  • 2) Simovski, C.R., Maagt, P. de and Melchakova, I.V., “High-impedance surfaces having stable resonance with respect to polarization and incidence angle”, IEEE Trans. Antennas Propag. 53(3):908–914 (2005). doi: 10.1109/TAP.2004.842598
  • 3) Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R. and Padilla, W.J., “A perfect metamaterial absorber”, Phys. Rev. Lett. 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402
  • 4) Watts, C.M., Liu, X. and Padilla, W.J., “Metamaterial electromagnetic wave absorbers”, Adv. Mater. 24:OP98–OP120 (2012). doi: 10.1002/adma.201200674
  • 5) Chen, H-T., Yang, H., Singh, R., O’Hara, J.F., Azad, A.K., Trugman, S.A., Jia, Q.X. and Taylor, A.J., “Tuning the resonance in high-temperature superconducting terahertz metamaterials”, Phys. Rev. Lett. 105(24):247402 (2010). doi: 10.1103/PhysRevLett.105.247402
  • 6) Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H. and Mayer, T.S., “Near-ideal optical metamaterial absorbers with super-octave bandwidth”, ACS Nano 8(2):1517–1524 (2014). doi: 10.1021/nn4057148
  • 7) Liu, Z., Li, Y., Zhang, J., Huang, Y., Li, Z., Pei, J., Fang, B., Wang, X. and Xiao, H., “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films”, J. Phys. D: Appl. Phys. 50:385104 (2017). doi: 10.1088/1361–6463/aa8338
  • 8) Kadlec, C., Skoromets, V., Kadlec, F., Němec, H., Chen, H.-T., Jurka, V., Hruška, K. and Kužel, P., “Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO3 layers”, J. Phys. D: Appl. Phys. 51:054001 (2018). doi: 10.1088/1361-6463/aaa315
  • 9) Shen, X., Yang, Y., Zang, Y., Gu, J., Han, J., Zhang, W. and Cui, T.J. “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation”, Appl. Phys. Lett. 101: 154102 (2012). doi: 10.1063/1.4757879
  • 10) Dong, B., Ma, H., Wang, J., Shi, P., Li, J., Zhu, L., Lou, J., Feng, M. and Qu, S., “A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film”, J. Phys. D: Appl. Phys. 52:045301 (2019). doi: 10.1088/1361-6463/aaebef
  • 11) Ding, F., Cui, Y., Ge, X., Jin, Y. and He, S., “Ultra-broadband microwave metamaterial absorber”, Appl. Phys. Lett. 100:103506 (2012). doi: 10.1063/1.3692178
  • 12) Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, L. and Ma, Y., “Ultra-broadband terahertz metamaterial absorber”, Appl. Phys. Lett. 105:021102 (2014). doi: 10.1063/1.4890521
  • 13) Ye, Q., Liu, Y., Lin, H., Li, M., Yang, H., “Multi-band metamaterial absorber made of multi-gap SRRs structure”, Appl. Phys. A: Mater. Sci. Process 107:155 (2012). doi: 10.1007/s00339-012-6796-7
  • 14) He, Y., Wu, Q. and Yan, S., “Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra-thin metamaterial”, Plasmonics 14, 1303–1310 (2019). doi: 10.1007/s11468-019-00936-7
  • 15) Sood, D. and Tripathi, C.C., “Quad band electric field-driven LC resonator based polarisation-insensitive metamaterial absorber”, IET Microw. Antennas Propag. 12(4):588–594 (2017). doi: 10.1049/iet-map.2017.0908
  • 16) Huang, X., Lu, C., Rong, C., Hu, Z., and Liu, M., “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances”, IEEE Photonics J. 10, 6:4600811 (2018). doi: 10.1109/JPHOT.2018.2878455
  • 17) Padilla, W.J., Taylor, A. J., Highstrete, C., Lee, M. and Averitt, R.D., “Dynamical electric and magnetic metamaterial response at terahertz frequencies”, Phys. Rev. Lett. 96:107401 (2006). doi: 10.1103/PhysRevLett.96.107401
  • 18) Chen, H.-T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J. and Averitt, R.D., “Active terahertz metamaterial devices”, Nature 444: 597–600 (2006). doi: 10.1038/nature05343
  • 19) Ricci, M.C., Xu, H., Prozorov, R., Zhuravel, A.P., Ustinov, A.V. and Anlage, S.M., “Tunability of superconducting metamaterials”, IEEE Trans. Appl. Supercond. 17(2):918–921 (2007). doi: 10.1109/TASC.2007.898535
  • 20) Fedotov, V.A., Tsiatmas, A., Shi, J.H., Buckingham, R., Groot, P. de, Chen, Y., Wang, S. and Zheludev, N.I., “Temperature control of Fano resonances and transmission in superconducting metamaterials”, Opt. Express 18(9):9015–9019 (2010). doi: 10.1364/OE.18.009015
  • 21) Jin, B.B., Zhang, C., Engelbrecht, S., Pimenov, A., Wu, J., Xu, Q., Cao, C., Chen, J., Xu, W., Kang, L. and Wu, P., “Low loss and magnetic field tunable superconducting terahertz metamaterial”, Opt Express 18(16):17504–17509 (2010). doi: 10.1364/OE.18.017504
  • 22) Singh, R., Xiong, J., Azad, A.K., Yang, H., Trugman, S.A., Jia, Q.X., Taylor, A.J. and Chen, H.T., “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials”, Nanophotonics, 1:117–123 (2012). doi: 10.1515/nanoph-2012-0007
  • 23) Srivastava, Y.K., Manjappa, M., Cong, L., Krishnamoorthy, H.N.S., Savinov, V., Pitchappa, P. and Singh, R., “A superconducting dual-channel photonic switch”, Adv. Mater. 30: 1801257 (2018). doi: 10.1002/adma.201801257
  • 24) Zhao, J., Cheng, Q., Chen, J., Qi, M.Q., Jiang, W.X. and Cui, T.J., “A tunable metamaterial absorber using varactor diodes”, New J. Phys. 15:043049 (2013). doi:10.1088/1367-2630/15/4/043049
  • 25) Yuan, H., Zhu, B.O. and Yeng, F., “A frequency and bandwidth tunable metamaterial absorber in X-band”, J. Appl. Phys. 117:173103 (2015). doi: 10.1063/1.4919753
  • 26) Hu, F., Qian, Y., Li, Z., Niu, J., Nie, K., Xiong, X., Zhang, W. and Peng, Z., “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array”, J. Opt. 15, 055101 (2013). doi: 10.1088/2040-8978/15/5/055101
  • 27) Yao, G., Ling, F., Yue, J., Luo, C., Ji, J. and Yao, J., “Dual-band tunable perfect metamaterial absorber in the THz range”, Opt. Express 24(2):1518–1527 (2016). doi: 10.1364/OE.24.001518
  • 28) Mulla, B. and Sabah, C., “Improvement of multiband absorption with different technics (graphene, ITO, and hole) for metamaterial absorber at optical frequencies”, J. Nanophotonics 12(4):046017 (2018). doi: 10.1117/1.JNP.12.046017
  • 29) Zhou, Q., Liu, P., Bian, L.-A., Cai, X. and Liu, H., “Multi-band terahertz absorber exploiting graphene metamaterial”, Opt. Mater. Express 8(9):2928–2940 (2018). doi: 10.1364/OME.8.002928
  • 30) Liu, C., Qi, L. and Zhang, X., “Broadband graphene-based metamaterial absorbers”, AIP Adv. 8:015301 (2018). doi: 10.1063/1.4998321
  • 31) Xu, Z., Wu, D., Liu, Y., Liu, C., Yu, Z., Yu, L. and Ye, H., “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons”, Nanoscale Res. Lett. 13:143 (2018). doi: 10.1186/s11671-018-2552-z
  • 32) Lin , H., Sturmberg, B.C.P., Lin, K.-T., Yang, Y., Zheng, X., Chong, T.K., Sterke, C.M. and Jia, B., “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light”, Nat. Photonics 13:270–276 (2019). doi: 10.10138/s41566-019-0389-3.
  • 33) Ling, K., Yoo, M., Su, W., Kim, K., Cook, B., Tentzeris, M.M. and Lim, S., “Microfluidic tunable inkjet-printed metamaterial absorber on paper”, Opt. Express 23:110–120 (2015). doi: 10.1364/OE.23.000110
  • 34) Shrekenhamer, D., Chen, W.C. and Padilla, W.J., “Liquid crystal tunable metamaterial absorber”, Phys. Rev. Lett. 110(17):177403 (2013). doi: 10.1103/PhysRevLett.110.177403
  • 35) Isic, G., Vasic, B., Zografopoulos, D.C., Beccherelli, R. and Gajic, R., “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals”, Phys. Rev. Appl. 3:064007 (2015). doi: 10.1103/PhysRevApplied.3.064007
  • 36) Luu, D.H., Dung, N.V., Hai, P., Giang, T.T. and Lam, V.D., “Switchable and tunable metamaterial absorber in THz frequencies”, J. Sci.: Adv. Mater. Dev. 1:65–68 (2016). doi: 10.1016/j.jsamd.2016.04.002
  • 37) Bian, Y., Wu, C., Li, H. and Zhai, J., “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film”, Appl. Phys. Lett. 104, 042906 (2014). doi: 10.1063/1.4863669
  • 38) Song, Z.Y., Wang, K., Li, J.W. and Liu, Q.H., “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials”, Opt. Exp. 26(6):7148–7154 (2018). doi: 10.1364/OE.26.007148
  • 39) Li, D., Huang, H., Xia, H., Zengb, J., Li, H. and Xie, D., “Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator”, Results Phys. 11:659–664 (2018). doi: 10.1016/j.rinp.2018.10.014
  • 40) Wang, B.-X. and Wang, G.-Z., “Temperature tunable metamaterial absorber at THz frequencies”, J. Mater. Sci.: Mater. Electron. 28:8487–8493 (2017). doi: 10.1007/s10854-017-6570-x
  • 41) Zou, H. and Cheng, Y., “Design of a six-band terahertz metamaterial absorber for temperature sensing application”, Opt. Mater. 88:674–679 (2019). doi: 10.1016/j.optmat.2019.01.002
  • 42) Appasani, B., “An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures”, Prog. Electromagn. Res. Lett. 95, 9–16 (2021). doi: 10.2528/PIERL20101501 43) Cunningham, R.W. and Gruber, J.B., “Intrinsic concentration and heavy-hole mass in InSb”, J. Appl. Phys. 41(4):1804–1809 (1970). doi: 10.1063/1.1659107
  • 44) Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W. and Singh, R., “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces”, Appl. Phys. Lett. 106:031107 (2015). doi: 10.1063/1.4906109
  • 45) Huang, X., He, W., Yang, F., Ran, J., Yang, Q. and Xie, S., “Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime”, Opt. Mater. Express 9(3):1377-1385 (2019). doi: 10.1364/OME.9.001377
  • 46) Li, W., Kuang, D., Fan, F., Chang, S. and Lin, L., “Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure”, Appl. Opt. 51(29):7098–7102 (2012). doi: 10.1364/AO.51.007098
  • 47) Appasani, B., “Temperature tunable seven band terahertz metamaterial absorber using slotted flower–shaped resonator on an InSb substrate”, Plasmonics (2021). doi: 10.1007/s11468-020-01329-x
Year 2021, Volume: 34 Issue: 4, 1163 - 1177, 01.12.2021
https://doi.org/10.35378/gujs.769726

Abstract

Project Number

117E5074 ve 17B0443006

References

  • 1) Sievenpiper, D., Zhang, L., Jimenez Broas, R.F., Alexopolous, N.G. and Yablonovitch, E., “High-impedance electromagnetic surfaces with a forbidden frequency band”, IEEE Trans. Microw. Theory Tech., 47(11):2059–2074 (1999). doi: 10.1109/22.798001
  • 2) Simovski, C.R., Maagt, P. de and Melchakova, I.V., “High-impedance surfaces having stable resonance with respect to polarization and incidence angle”, IEEE Trans. Antennas Propag. 53(3):908–914 (2005). doi: 10.1109/TAP.2004.842598
  • 3) Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R. and Padilla, W.J., “A perfect metamaterial absorber”, Phys. Rev. Lett. 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402
  • 4) Watts, C.M., Liu, X. and Padilla, W.J., “Metamaterial electromagnetic wave absorbers”, Adv. Mater. 24:OP98–OP120 (2012). doi: 10.1002/adma.201200674
  • 5) Chen, H-T., Yang, H., Singh, R., O’Hara, J.F., Azad, A.K., Trugman, S.A., Jia, Q.X. and Taylor, A.J., “Tuning the resonance in high-temperature superconducting terahertz metamaterials”, Phys. Rev. Lett. 105(24):247402 (2010). doi: 10.1103/PhysRevLett.105.247402
  • 6) Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H. and Mayer, T.S., “Near-ideal optical metamaterial absorbers with super-octave bandwidth”, ACS Nano 8(2):1517–1524 (2014). doi: 10.1021/nn4057148
  • 7) Liu, Z., Li, Y., Zhang, J., Huang, Y., Li, Z., Pei, J., Fang, B., Wang, X. and Xiao, H., “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films”, J. Phys. D: Appl. Phys. 50:385104 (2017). doi: 10.1088/1361–6463/aa8338
  • 8) Kadlec, C., Skoromets, V., Kadlec, F., Němec, H., Chen, H.-T., Jurka, V., Hruška, K. and Kužel, P., “Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO3 layers”, J. Phys. D: Appl. Phys. 51:054001 (2018). doi: 10.1088/1361-6463/aaa315
  • 9) Shen, X., Yang, Y., Zang, Y., Gu, J., Han, J., Zhang, W. and Cui, T.J. “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation”, Appl. Phys. Lett. 101: 154102 (2012). doi: 10.1063/1.4757879
  • 10) Dong, B., Ma, H., Wang, J., Shi, P., Li, J., Zhu, L., Lou, J., Feng, M. and Qu, S., “A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film”, J. Phys. D: Appl. Phys. 52:045301 (2019). doi: 10.1088/1361-6463/aaebef
  • 11) Ding, F., Cui, Y., Ge, X., Jin, Y. and He, S., “Ultra-broadband microwave metamaterial absorber”, Appl. Phys. Lett. 100:103506 (2012). doi: 10.1063/1.3692178
  • 12) Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, L. and Ma, Y., “Ultra-broadband terahertz metamaterial absorber”, Appl. Phys. Lett. 105:021102 (2014). doi: 10.1063/1.4890521
  • 13) Ye, Q., Liu, Y., Lin, H., Li, M., Yang, H., “Multi-band metamaterial absorber made of multi-gap SRRs structure”, Appl. Phys. A: Mater. Sci. Process 107:155 (2012). doi: 10.1007/s00339-012-6796-7
  • 14) He, Y., Wu, Q. and Yan, S., “Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra-thin metamaterial”, Plasmonics 14, 1303–1310 (2019). doi: 10.1007/s11468-019-00936-7
  • 15) Sood, D. and Tripathi, C.C., “Quad band electric field-driven LC resonator based polarisation-insensitive metamaterial absorber”, IET Microw. Antennas Propag. 12(4):588–594 (2017). doi: 10.1049/iet-map.2017.0908
  • 16) Huang, X., Lu, C., Rong, C., Hu, Z., and Liu, M., “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances”, IEEE Photonics J. 10, 6:4600811 (2018). doi: 10.1109/JPHOT.2018.2878455
  • 17) Padilla, W.J., Taylor, A. J., Highstrete, C., Lee, M. and Averitt, R.D., “Dynamical electric and magnetic metamaterial response at terahertz frequencies”, Phys. Rev. Lett. 96:107401 (2006). doi: 10.1103/PhysRevLett.96.107401
  • 18) Chen, H.-T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J. and Averitt, R.D., “Active terahertz metamaterial devices”, Nature 444: 597–600 (2006). doi: 10.1038/nature05343
  • 19) Ricci, M.C., Xu, H., Prozorov, R., Zhuravel, A.P., Ustinov, A.V. and Anlage, S.M., “Tunability of superconducting metamaterials”, IEEE Trans. Appl. Supercond. 17(2):918–921 (2007). doi: 10.1109/TASC.2007.898535
  • 20) Fedotov, V.A., Tsiatmas, A., Shi, J.H., Buckingham, R., Groot, P. de, Chen, Y., Wang, S. and Zheludev, N.I., “Temperature control of Fano resonances and transmission in superconducting metamaterials”, Opt. Express 18(9):9015–9019 (2010). doi: 10.1364/OE.18.009015
  • 21) Jin, B.B., Zhang, C., Engelbrecht, S., Pimenov, A., Wu, J., Xu, Q., Cao, C., Chen, J., Xu, W., Kang, L. and Wu, P., “Low loss and magnetic field tunable superconducting terahertz metamaterial”, Opt Express 18(16):17504–17509 (2010). doi: 10.1364/OE.18.017504
  • 22) Singh, R., Xiong, J., Azad, A.K., Yang, H., Trugman, S.A., Jia, Q.X., Taylor, A.J. and Chen, H.T., “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials”, Nanophotonics, 1:117–123 (2012). doi: 10.1515/nanoph-2012-0007
  • 23) Srivastava, Y.K., Manjappa, M., Cong, L., Krishnamoorthy, H.N.S., Savinov, V., Pitchappa, P. and Singh, R., “A superconducting dual-channel photonic switch”, Adv. Mater. 30: 1801257 (2018). doi: 10.1002/adma.201801257
  • 24) Zhao, J., Cheng, Q., Chen, J., Qi, M.Q., Jiang, W.X. and Cui, T.J., “A tunable metamaterial absorber using varactor diodes”, New J. Phys. 15:043049 (2013). doi:10.1088/1367-2630/15/4/043049
  • 25) Yuan, H., Zhu, B.O. and Yeng, F., “A frequency and bandwidth tunable metamaterial absorber in X-band”, J. Appl. Phys. 117:173103 (2015). doi: 10.1063/1.4919753
  • 26) Hu, F., Qian, Y., Li, Z., Niu, J., Nie, K., Xiong, X., Zhang, W. and Peng, Z., “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array”, J. Opt. 15, 055101 (2013). doi: 10.1088/2040-8978/15/5/055101
  • 27) Yao, G., Ling, F., Yue, J., Luo, C., Ji, J. and Yao, J., “Dual-band tunable perfect metamaterial absorber in the THz range”, Opt. Express 24(2):1518–1527 (2016). doi: 10.1364/OE.24.001518
  • 28) Mulla, B. and Sabah, C., “Improvement of multiband absorption with different technics (graphene, ITO, and hole) for metamaterial absorber at optical frequencies”, J. Nanophotonics 12(4):046017 (2018). doi: 10.1117/1.JNP.12.046017
  • 29) Zhou, Q., Liu, P., Bian, L.-A., Cai, X. and Liu, H., “Multi-band terahertz absorber exploiting graphene metamaterial”, Opt. Mater. Express 8(9):2928–2940 (2018). doi: 10.1364/OME.8.002928
  • 30) Liu, C., Qi, L. and Zhang, X., “Broadband graphene-based metamaterial absorbers”, AIP Adv. 8:015301 (2018). doi: 10.1063/1.4998321
  • 31) Xu, Z., Wu, D., Liu, Y., Liu, C., Yu, Z., Yu, L. and Ye, H., “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons”, Nanoscale Res. Lett. 13:143 (2018). doi: 10.1186/s11671-018-2552-z
  • 32) Lin , H., Sturmberg, B.C.P., Lin, K.-T., Yang, Y., Zheng, X., Chong, T.K., Sterke, C.M. and Jia, B., “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light”, Nat. Photonics 13:270–276 (2019). doi: 10.10138/s41566-019-0389-3.
  • 33) Ling, K., Yoo, M., Su, W., Kim, K., Cook, B., Tentzeris, M.M. and Lim, S., “Microfluidic tunable inkjet-printed metamaterial absorber on paper”, Opt. Express 23:110–120 (2015). doi: 10.1364/OE.23.000110
  • 34) Shrekenhamer, D., Chen, W.C. and Padilla, W.J., “Liquid crystal tunable metamaterial absorber”, Phys. Rev. Lett. 110(17):177403 (2013). doi: 10.1103/PhysRevLett.110.177403
  • 35) Isic, G., Vasic, B., Zografopoulos, D.C., Beccherelli, R. and Gajic, R., “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals”, Phys. Rev. Appl. 3:064007 (2015). doi: 10.1103/PhysRevApplied.3.064007
  • 36) Luu, D.H., Dung, N.V., Hai, P., Giang, T.T. and Lam, V.D., “Switchable and tunable metamaterial absorber in THz frequencies”, J. Sci.: Adv. Mater. Dev. 1:65–68 (2016). doi: 10.1016/j.jsamd.2016.04.002
  • 37) Bian, Y., Wu, C., Li, H. and Zhai, J., “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film”, Appl. Phys. Lett. 104, 042906 (2014). doi: 10.1063/1.4863669
  • 38) Song, Z.Y., Wang, K., Li, J.W. and Liu, Q.H., “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials”, Opt. Exp. 26(6):7148–7154 (2018). doi: 10.1364/OE.26.007148
  • 39) Li, D., Huang, H., Xia, H., Zengb, J., Li, H. and Xie, D., “Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator”, Results Phys. 11:659–664 (2018). doi: 10.1016/j.rinp.2018.10.014
  • 40) Wang, B.-X. and Wang, G.-Z., “Temperature tunable metamaterial absorber at THz frequencies”, J. Mater. Sci.: Mater. Electron. 28:8487–8493 (2017). doi: 10.1007/s10854-017-6570-x
  • 41) Zou, H. and Cheng, Y., “Design of a six-band terahertz metamaterial absorber for temperature sensing application”, Opt. Mater. 88:674–679 (2019). doi: 10.1016/j.optmat.2019.01.002
  • 42) Appasani, B., “An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures”, Prog. Electromagn. Res. Lett. 95, 9–16 (2021). doi: 10.2528/PIERL20101501 43) Cunningham, R.W. and Gruber, J.B., “Intrinsic concentration and heavy-hole mass in InSb”, J. Appl. Phys. 41(4):1804–1809 (1970). doi: 10.1063/1.1659107
  • 44) Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W. and Singh, R., “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces”, Appl. Phys. Lett. 106:031107 (2015). doi: 10.1063/1.4906109
  • 45) Huang, X., He, W., Yang, F., Ran, J., Yang, Q. and Xie, S., “Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime”, Opt. Mater. Express 9(3):1377-1385 (2019). doi: 10.1364/OME.9.001377
  • 46) Li, W., Kuang, D., Fan, F., Chang, S. and Lin, L., “Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure”, Appl. Opt. 51(29):7098–7102 (2012). doi: 10.1364/AO.51.007098
  • 47) Appasani, B., “Temperature tunable seven band terahertz metamaterial absorber using slotted flower–shaped resonator on an InSb substrate”, Plasmonics (2021). doi: 10.1007/s11468-020-01329-x
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Fulya Bağcı 0000-0002-5266-5413

Project Number 117E5074 ve 17B0443006
Publication Date December 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 4

Cite

APA Bağcı, F. (2021). A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science, 34(4), 1163-1177. https://doi.org/10.35378/gujs.769726
AMA Bağcı F. A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science. December 2021;34(4):1163-1177. doi:10.35378/gujs.769726
Chicago Bağcı, Fulya. “A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks”. Gazi University Journal of Science 34, no. 4 (December 2021): 1163-77. https://doi.org/10.35378/gujs.769726.
EndNote Bağcı F (December 1, 2021) A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science 34 4 1163–1177.
IEEE F. Bağcı, “A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks”, Gazi University Journal of Science, vol. 34, no. 4, pp. 1163–1177, 2021, doi: 10.35378/gujs.769726.
ISNAD Bağcı, Fulya. “A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks”. Gazi University Journal of Science 34/4 (December 2021), 1163-1177. https://doi.org/10.35378/gujs.769726.
JAMA Bağcı F. A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science. 2021;34:1163–1177.
MLA Bağcı, Fulya. “A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks”. Gazi University Journal of Science, vol. 34, no. 4, 2021, pp. 1163-77, doi:10.35378/gujs.769726.
Vancouver Bağcı F. A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks. Gazi University Journal of Science. 2021;34(4):1163-77.