Review
BibTex RIS Cite

Asma Tomurcuklarında Dormansi Sürecinde Genetik Regülasyon ve Hormonal Etkileşim

Year 2023, Volume: 1 Issue: 2, 61 - 70, 31.12.2023

Abstract

Çok yıllık bitkilerde tomurcuk dormansisi; dışsal (ışık, sıcaklık) ve içsel (hormonlar, enzimler, karbonhidratlar vb.) faktörler nedeniyle hücre bölünmesi, tomurcuk büyümesinin durması veya yavaşlaması, metabolik aktivitelerinin azalması ile bitkinin olumsuz koşullar altında uzun süre hayatta kalmasını sağlayan fizyolojik bir aşamadır. Dormansi, uygun çiçeklenme ve meyve tutumu için bir ön koşuldur. ABA bir stres hormonu olup dormansi mekanizmasını kontrol eden belirleyici hormon görevini alır. Tomurcuk dormansisi, başlıca genetik, fizyolojik ve ekolojik faktörler tarafından etkilenen soğuk uyum sürecidir. Tomurcuk dormansisinin fizyolojisi karmaşık olmasına rağmen, son zamanlarda metabolik, fizyolojik, genetik, omik ve biyoinformatik yöntemleri kullanılarak bu alanda birçok ilerleme sağlanmıştır. Bu çalışmada, asmalarda dormansi sürecinde hormonal değişimler ve gen düzeyinde regülasyonu konusunda son yıllarda yapılan çalışmalar derlenmiştir.

References

  • Arora R, Rowland LJ and Tanino K (2003). Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38, 911–921. doi: 10.21273/HORTSCI.38.5.911
  • Bleecker AB and Kende H (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18. doi: 10.1146/annurev.cellbio.16.1.1
  • Bruckner CH, Wagner Júnıor A, Pımentel LD, Sılva JOC, Santos CEM and Morgado MADO (2019). Chilling requirement evaluation of peach hybrids obtained among cultivars with high and low chilling requirements. Acta Horticulturae, Hague, n. 872, p. 177-180, 2010. DOI: 10.17660/ActaHortic. 2010.872.22
  • Chervin C and Fennell A. (2019). Ethanol sprays to release grapevine bud dormancy: a potential alternative to cyanamides. OENO One 2019, 4, 6661-666
  • Cooke JE, Eriksson, ME and Junttila O (2012). The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 35, 1707–1728. doi: 10.1111/j.1365-3040.2012.02552.
  • Díaz-Riquelme J, Grimplet J, Martínez-Zapater JM and Carmona MJ (2012). Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biol, 12:181. doi: 10.1186/1471-2229-12-181.
  • Fendrych M, Leung J and Friml J. (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. Elife 5, e19048. doi: 10.7554/eLife.19048
  • Fennell A. (2004). Freezing tolerance and injury in grapevines. J. Crop Improvement 10, 201–235. doi: 10.1300/J411v10n01_09
  • Fennell AY, Schlauch KA, Gouthu S, Deluc LG, Khadka V, Sreekantan L, Grimplet J, Cramer GR and Mathiason KL (2015). Short day transcriptomic programming during induction of dormancy in grapevine. Front. Plant Sci. 6:834. doi: 10.3389/fpls.2015.00834
  • Finkelstein, R. (2013). Abscisic acid synthesis and response. Arabidopsis Book 11, e0166. doi: 10.1199/tab.0166
  • Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Sadka A, Lavee S and Or E. (2008). Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta, 228 (2008), pp. 79-88
  • Halaly T, Zion B, Arbel A, Regev R, Barak M and Or E (2011). Short exposure to sublethal heat shock facilitates dormancy release in grapevines. Am. J. Enol. Viticult., 62 (2011), pp. 106-112
  • Iqbal N, Trivellini A, Masood A, Ferrante A and Khan NA (2013). Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol. Biochem. 73, 128–138. doi: 10.1016/j.plaphy.2013.09.011.
  • Liu J and Sherif SM (2019). Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. Frontiers in Plant Science. Vol:10, p.1136.
  • Keller M (2015). Phenology and growth cycle. In: The science of grapevines: Anatomy and physiology. 2nd edn. Academic Press, London. pp. 59–99.
  • Khalil-Ur-Rehman M, Sun L, Li CX, Faheem M, Wang W and Tao JM (2017). Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. BMC Plant Biol. 2017;17(1):18. Published 2017 Jan 19. doi:10.1186/s12870-016-0960-8.
  • Kobayashi M, Horiuchi H, Fujita K, Takuhara Y, and Suzuki S (2012). Characterization of grape C-repeat-binding factor 2 and B-box-type zing finger protein in transgenic Arabidopsis plants under stress conditions. Plant Mol. Biol. Rep. 39:7933–7939.
  • Kovaleski AP, and Londo J (2019). Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and budbreak. Plant Science, Vol.: 287, 110178.
  • Lang GA (1987). Dormancy: a new universal terminology. HortScience, 22, 817–820.
  • Leyser O (2018). Auxin Signaling. Plant Physiol. 176, 465–479. doi: 10.1104/pp.17.00765
  • Liao X, Li M, Liu B, Yan M, Yu X, Zi H, ve ark. (2018). Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc. Natl. Acad. Sci. U.S.A. 115, E11542–E11550. doi: 10.1073/pnas.1812575115
  • Liotenberg S, North H. and Marion-Poll A. (1999). Molecular biology of abscisic acid biosynthesis in plants. Plant Physiol. Biochem. 37, 341–350. doi: 10.1016/S0981-9428(99)80040-0
  • Marin E., Nussaume L., Quesada A M, Sotta B, Hugueney P and Frey A (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 15, 2331–2342. doi: 10.1002/j.1460-2075.1996.tb00589.x
  • Milborrow B V (2001). The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J. Exp. Bot. 52, 1145–1164. doi: 10.1093/jexbot/52.359.1145
  • Muller D, Leyser O (2011). Auxin, cytokinin and the control of shoot branching. Ann. Bot. 107, 1203–1212. doi: 10.1093/aob/mcr069
  • Pan W, Liang J, Sui J, Li J, Liu C, Xin Y, Zhang Y, Wang S, Zhao Y, Zhang J. ve ark. (2021). ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes 2021, 12, 1635. https://doi.org/ 10.3390/genes12101635
  • Richardson E A, Seeley SD, Walker DR (1974). A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience, 9(4):331-332, 1974.
  • Rinne P L, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J. ve ark. (2011). Chilling of dormant buds hyperinduces Flowerıng Locus T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23, 130–146. doi: 10.1105/tpc.110.081307.
  • Rubio S, Noriega X and Perez FJ (2019). ABA promotes starch synthesis and storage metabolism in dormant grapevine buds. J. Plant Physiol. 234, 1–8. doi: 10.1016/j.jplph.2019.01.004
  • Sakakibara H, (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449. doi: 10.1146/annurev.arplant.57.032905.105231
  • Shaltout AD and Unrath CR. (1983). Rest completion prediction model for ‘Starkrimson Delicious’ apples. Journal of the American Society for Horticultural Science , 108(6):957-961.
  • Shi Z, Halaly-Basha T, Zheng C ve ark. (2018). Transient induction of a subset of ethylene biosynthesis genes is potentially involved in regulation of grapevine bud dormancy release. Plant Mol Biol 98, 507–523 (2018). https://doi.org/10.1007/s11103-018-0793-y
  • Simon S, Petrášek J (2011). Why plants need more than one type of auxin. Plant Sci. 180, 454–460. doi: 10.1016/j.plantsci.2010.12.007.
  • Smita S, Robben M, Deuja A, ve ark. (2021). Integrative Analysis of Gene Expression and miRNAs Reveal Biological Pathways Associated with Bud Paradormancy and Endodormancy in Grapevine. Plants (Basel). 2021;10(4):669. doi:10.3390/plants10040669
  • Taylor IB, Burbidge A, Thompson AJ (2000). Control of abscisic acid synthesis. J. Exp. Bot. 51, 1563–1574. doi: 10.1093/jexbot/51.350.1563
  • Vergara R, Parada F, Rubio S, Pérez FJ (2012). Hypoxia induces H2O2 production and activates antioxidant defence system in grapevine buds through mediation of H2O2 and ethylene. Journal of Experimental Botany, 63, 4123–4131.
  • Wang M, Vannozzi A, Wang G. ve ark. (2014). Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1, 14016. https://doi.org/10.1038/hortres.2014.16
  • Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, ve ark. (2015). Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front Plant Sci. 6, 1248. doi: 10.3389/fpls.2015.01248.
  • Wang FP, Zhao P P, Zhang L, Zhai H, Abid M, Du YP (2022). The VvWRKY37 Regulates Bud Break in Grape Vine Through ABA-Mediated Signaling Pathways. Frontiers in Plant Science, Vol: 13. 1-13p.
  • Weinberger JH (1950). Chilling requirements of peach varieties. Proceedings of the American Society for Horticultural Science, 56:122-128.
  • Wisniewski M, Norelli J. and Artlip T. (2015). Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci. 6, 85. doi: 10.3389/fpls.2015.00085
  • Zabadal T, (2007). Winter Injury to Grapevines and Methods of Protection,– Michigan State University, 44pp.: http://migarden.msu.edu/uploads/files/e2930.pdf.
  • Zhang K, Diederich L and John PC (2005). The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase. Implications for mechanisms of cytokinin response and plant development. Plant Physiol. 137, 308–316. doi: 10.1104/pp.104.051938
  • Zheng C, Kwame Acheampong A, Shi Z, Halaly T, Kamiya Y, Ophir R ve ark. (2018). Distinct gibberellin functions during and after grapevine bud dormancy release. J. Exp. Bot. 69, 1635–1648.
  • Zheng C, Halaly T., Acheampong AK, Takebayashi Y, Jikumaru Y., Kamiya Y, ve ark. (2015). Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. J. Exp. Bot. 66, 1527–1542.
  • Zhuang W, Gao Z, Wang L, Zhong W, Ni Z and Zhang Z (2013). Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release. J. Exp. Bot. 64, 4953–4966.
  • Zhuang W, Gao Z, Wen L, Huo X, Cai B and Zhang Z (2015). Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. Hortic. Res. 2, 15046.
  • Zürcher E and Müller B (2016). “Cytokinin synthesis, signaling, and function—advances and new insights,” in International review of cell and molecular biology. Elsevier, Cambridge, Massachussetts: Academic Press. 234: 1–38.

Genetic Regulation and Hormonal Interaction in the Dormancy Process in Vine Buds

Year 2023, Volume: 1 Issue: 2, 61 - 70, 31.12.2023

Abstract

Bud dormancy in perennial plants, physiological phase that enables long-term survival under adverse conditions and is accompanied by a decrease in growth, cell division, and metabolic activities. Dormancy is necessary for flowering and fruit set process. ABA is a stress hormone and it regulates dormancy process. Bud dormancy is a cold adaptation process influenced by general genetic, phsiological and ecological factors. Although the physiology of bud dormancy is complex, many advances have been made in this field recently with metabolic, apparent, genetic, omics and bioinformatics methods In this study, researches conducted in recent years on hormonal changes and gene-level regulation during the dormancy process in grapevines were evaluated.

References

  • Arora R, Rowland LJ and Tanino K (2003). Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38, 911–921. doi: 10.21273/HORTSCI.38.5.911
  • Bleecker AB and Kende H (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18. doi: 10.1146/annurev.cellbio.16.1.1
  • Bruckner CH, Wagner Júnıor A, Pımentel LD, Sılva JOC, Santos CEM and Morgado MADO (2019). Chilling requirement evaluation of peach hybrids obtained among cultivars with high and low chilling requirements. Acta Horticulturae, Hague, n. 872, p. 177-180, 2010. DOI: 10.17660/ActaHortic. 2010.872.22
  • Chervin C and Fennell A. (2019). Ethanol sprays to release grapevine bud dormancy: a potential alternative to cyanamides. OENO One 2019, 4, 6661-666
  • Cooke JE, Eriksson, ME and Junttila O (2012). The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 35, 1707–1728. doi: 10.1111/j.1365-3040.2012.02552.
  • Díaz-Riquelme J, Grimplet J, Martínez-Zapater JM and Carmona MJ (2012). Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biol, 12:181. doi: 10.1186/1471-2229-12-181.
  • Fendrych M, Leung J and Friml J. (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. Elife 5, e19048. doi: 10.7554/eLife.19048
  • Fennell A. (2004). Freezing tolerance and injury in grapevines. J. Crop Improvement 10, 201–235. doi: 10.1300/J411v10n01_09
  • Fennell AY, Schlauch KA, Gouthu S, Deluc LG, Khadka V, Sreekantan L, Grimplet J, Cramer GR and Mathiason KL (2015). Short day transcriptomic programming during induction of dormancy in grapevine. Front. Plant Sci. 6:834. doi: 10.3389/fpls.2015.00834
  • Finkelstein, R. (2013). Abscisic acid synthesis and response. Arabidopsis Book 11, e0166. doi: 10.1199/tab.0166
  • Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Sadka A, Lavee S and Or E. (2008). Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta, 228 (2008), pp. 79-88
  • Halaly T, Zion B, Arbel A, Regev R, Barak M and Or E (2011). Short exposure to sublethal heat shock facilitates dormancy release in grapevines. Am. J. Enol. Viticult., 62 (2011), pp. 106-112
  • Iqbal N, Trivellini A, Masood A, Ferrante A and Khan NA (2013). Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol. Biochem. 73, 128–138. doi: 10.1016/j.plaphy.2013.09.011.
  • Liu J and Sherif SM (2019). Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. Frontiers in Plant Science. Vol:10, p.1136.
  • Keller M (2015). Phenology and growth cycle. In: The science of grapevines: Anatomy and physiology. 2nd edn. Academic Press, London. pp. 59–99.
  • Khalil-Ur-Rehman M, Sun L, Li CX, Faheem M, Wang W and Tao JM (2017). Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. BMC Plant Biol. 2017;17(1):18. Published 2017 Jan 19. doi:10.1186/s12870-016-0960-8.
  • Kobayashi M, Horiuchi H, Fujita K, Takuhara Y, and Suzuki S (2012). Characterization of grape C-repeat-binding factor 2 and B-box-type zing finger protein in transgenic Arabidopsis plants under stress conditions. Plant Mol. Biol. Rep. 39:7933–7939.
  • Kovaleski AP, and Londo J (2019). Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and budbreak. Plant Science, Vol.: 287, 110178.
  • Lang GA (1987). Dormancy: a new universal terminology. HortScience, 22, 817–820.
  • Leyser O (2018). Auxin Signaling. Plant Physiol. 176, 465–479. doi: 10.1104/pp.17.00765
  • Liao X, Li M, Liu B, Yan M, Yu X, Zi H, ve ark. (2018). Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc. Natl. Acad. Sci. U.S.A. 115, E11542–E11550. doi: 10.1073/pnas.1812575115
  • Liotenberg S, North H. and Marion-Poll A. (1999). Molecular biology of abscisic acid biosynthesis in plants. Plant Physiol. Biochem. 37, 341–350. doi: 10.1016/S0981-9428(99)80040-0
  • Marin E., Nussaume L., Quesada A M, Sotta B, Hugueney P and Frey A (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 15, 2331–2342. doi: 10.1002/j.1460-2075.1996.tb00589.x
  • Milborrow B V (2001). The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J. Exp. Bot. 52, 1145–1164. doi: 10.1093/jexbot/52.359.1145
  • Muller D, Leyser O (2011). Auxin, cytokinin and the control of shoot branching. Ann. Bot. 107, 1203–1212. doi: 10.1093/aob/mcr069
  • Pan W, Liang J, Sui J, Li J, Liu C, Xin Y, Zhang Y, Wang S, Zhao Y, Zhang J. ve ark. (2021). ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes 2021, 12, 1635. https://doi.org/ 10.3390/genes12101635
  • Richardson E A, Seeley SD, Walker DR (1974). A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience, 9(4):331-332, 1974.
  • Rinne P L, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J. ve ark. (2011). Chilling of dormant buds hyperinduces Flowerıng Locus T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23, 130–146. doi: 10.1105/tpc.110.081307.
  • Rubio S, Noriega X and Perez FJ (2019). ABA promotes starch synthesis and storage metabolism in dormant grapevine buds. J. Plant Physiol. 234, 1–8. doi: 10.1016/j.jplph.2019.01.004
  • Sakakibara H, (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449. doi: 10.1146/annurev.arplant.57.032905.105231
  • Shaltout AD and Unrath CR. (1983). Rest completion prediction model for ‘Starkrimson Delicious’ apples. Journal of the American Society for Horticultural Science , 108(6):957-961.
  • Shi Z, Halaly-Basha T, Zheng C ve ark. (2018). Transient induction of a subset of ethylene biosynthesis genes is potentially involved in regulation of grapevine bud dormancy release. Plant Mol Biol 98, 507–523 (2018). https://doi.org/10.1007/s11103-018-0793-y
  • Simon S, Petrášek J (2011). Why plants need more than one type of auxin. Plant Sci. 180, 454–460. doi: 10.1016/j.plantsci.2010.12.007.
  • Smita S, Robben M, Deuja A, ve ark. (2021). Integrative Analysis of Gene Expression and miRNAs Reveal Biological Pathways Associated with Bud Paradormancy and Endodormancy in Grapevine. Plants (Basel). 2021;10(4):669. doi:10.3390/plants10040669
  • Taylor IB, Burbidge A, Thompson AJ (2000). Control of abscisic acid synthesis. J. Exp. Bot. 51, 1563–1574. doi: 10.1093/jexbot/51.350.1563
  • Vergara R, Parada F, Rubio S, Pérez FJ (2012). Hypoxia induces H2O2 production and activates antioxidant defence system in grapevine buds through mediation of H2O2 and ethylene. Journal of Experimental Botany, 63, 4123–4131.
  • Wang M, Vannozzi A, Wang G. ve ark. (2014). Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1, 14016. https://doi.org/10.1038/hortres.2014.16
  • Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, ve ark. (2015). Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front Plant Sci. 6, 1248. doi: 10.3389/fpls.2015.01248.
  • Wang FP, Zhao P P, Zhang L, Zhai H, Abid M, Du YP (2022). The VvWRKY37 Regulates Bud Break in Grape Vine Through ABA-Mediated Signaling Pathways. Frontiers in Plant Science, Vol: 13. 1-13p.
  • Weinberger JH (1950). Chilling requirements of peach varieties. Proceedings of the American Society for Horticultural Science, 56:122-128.
  • Wisniewski M, Norelli J. and Artlip T. (2015). Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci. 6, 85. doi: 10.3389/fpls.2015.00085
  • Zabadal T, (2007). Winter Injury to Grapevines and Methods of Protection,– Michigan State University, 44pp.: http://migarden.msu.edu/uploads/files/e2930.pdf.
  • Zhang K, Diederich L and John PC (2005). The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase. Implications for mechanisms of cytokinin response and plant development. Plant Physiol. 137, 308–316. doi: 10.1104/pp.104.051938
  • Zheng C, Kwame Acheampong A, Shi Z, Halaly T, Kamiya Y, Ophir R ve ark. (2018). Distinct gibberellin functions during and after grapevine bud dormancy release. J. Exp. Bot. 69, 1635–1648.
  • Zheng C, Halaly T., Acheampong AK, Takebayashi Y, Jikumaru Y., Kamiya Y, ve ark. (2015). Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. J. Exp. Bot. 66, 1527–1542.
  • Zhuang W, Gao Z, Wang L, Zhong W, Ni Z and Zhang Z (2013). Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release. J. Exp. Bot. 64, 4953–4966.
  • Zhuang W, Gao Z, Wen L, Huo X, Cai B and Zhang Z (2015). Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. Hortic. Res. 2, 15046.
  • Zürcher E and Müller B (2016). “Cytokinin synthesis, signaling, and function—advances and new insights,” in International review of cell and molecular biology. Elsevier, Cambridge, Massachussetts: Academic Press. 234: 1–38.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section Reviews
Authors

Dilek Karataş 0000-0003-3194-5165

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Submission Date November 20, 2023
Acceptance Date December 1, 2023
Published in Issue Year 2023 Volume: 1 Issue: 2

Cite

APA Karataş, D. (2023). Asma Tomurcuklarında Dormansi Sürecinde Genetik Regülasyon ve Hormonal Etkileşim. Iğdır Üniversitesi Tarım Bilimleri Dergisi, 1(2), 61-70.