Erratum
BibTex RIS Cite

Erratum:

Year 2024, Volume: 11 Issue: 1, 999 - 999, 04.02.2024
The original article was published on January 1, 2018. https://dergipark.org.tr/en/pub/jotcsa/issue/33408/373904

Erratum Note

Abstract

References

  • 1. Tidwell TT. Hugo (Ugo) Schiff, Schiff Bases and a Century of β-Lactam Synthesis. Angewandte Chemie International Edition. 2008; 47(6): 1016-20.
  • 2. Malladi S, Isloor AM, Isloor S, Akhila DS, Fun H-K, Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arabian Journal of Chemistry. 2013; 6(3): 335-40.
  • 3. Wang J, Lian Z, Wang H, Jin X, Liu Y. Synthesis and antimicrobial activity of Schiff base of chitosan and acylated chitosan. Journal of Applied Polymer Science. 2012; 123(6): 3242-47.
  • 4. Goszczyńska A, Kwiecień H, Fijałkowski K. Synthesis and antibacterial activity of Schiff bases and amines derived from alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates. Medicinal Chemistry Research. 2015; 24(9): 3561-77.
  • 5. Sikarwar P, Tomar S, Singh AP. Synthesis, Spectral Characterization and Antimicrobial Activity of Schiff Bases and Their Mixed Ligand Metal Complexes of Co(II), Ni(II), Cu(II) and Zn(II). American Journal of Chemistry. 2016; 6(5): 119-25.
  • 6. Chigurupati S. Designing New Vanillin Schiff Bases and their Antibacterial Studies. Journal of Medical and Bioengineering. 2015; 4(5): 363-6.
  • 7. Yang Q, Sun X, Liu Y, Chen B, Shen S. Synthesis and Antifungal Activity of Schiff Bases of 5-Ethoxycarbonylmethylsulfanyl-1,2,4-triazole. Chinese Journal of Applied Chemistry. 2014; 31(07): 788-92.
  • 8. Rehman W, Baloch MK, Muhammad B, Badshah A, Khan KM. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (IV) complexes. Chinese Science Bulletin. 2004; 49(2): 119-22.
  • 9. Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Pengcheng L. Antifungal properties of Schiff bases of chitosan, N -substituted chitosan and quaternized chitosan. Carbohydrate Research. 2007; 342(10): 1329-32.
  • 10. Karthikeyan MS, Prasad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorganic & Medicinal Chemistry. 2006; 14(22): 7482-9.
  • 11. Panneerselvam P, Nair RR, Vijayalakshmi G, Subramanian EH, Sridhar SK. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. European Journal of Medicinal Chemistry. 2005; 40(2): 225-9.
  • 12. Abd-Elzaher MM, Labib AA, Mousa HA, Moustafa SA, Ali MM, El-Rashedy AA. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni-Suef University Journal of Basic and Applied Sciences. 2016; 5(1): 85-96.
  • 13. Poonia K, Siddiqui S, Arshad M, Kumar D. In vitro anticancer activities of Schiff base and its lanthanum complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016; 155: 146-54.
  • 14. Shukla S, Srivastava RS, Shrivastava SK, Sodhi A, Kumar P. Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1,2-naphthoquinone. Medicinal Chemistry Research. 2013; 22(4): 1604-17.
  • 15. Emam SM, El Sayed IET, Ayad MI, Hathout HMR. Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine. Journal of Molecular Structure. 2017; 1146: 600-19.
  • 16. Kuzmin VE, Artemenko AG, Lozytska RN, Fedtchouk AS, Lozitsky VP, Muratov EN, Mescheriakov AK. Investigation of anticancer activity of macrocyclic Schiff bases by means of 4D-QSAR based on simplex representation of molecular structure. SAR and QSAR in Environmental Research. 2005; 16(3): 219-30.
  • 17. Luo H, Sui Y, Lin W-H, Wu H-Q. Study on the antiproliferative activity of four Schiff bases derived from natural biomass dehydroabiethylamine. Indian Journal of Chemistry. 2016; 55B(2): 248-51.
  • 18. Harpstrite SE, Collins SD, Oksman A, Goldberg DE, Sharma V. Synthesis, characterization, and antimalarial activity of novel schiff-base-phenol and naphthalene-amine ligands. Medicinal Chemistry. 2008; 4(4): 392-5.
  • 19. Sharma R, Goswami A, Rudrapal M, Sharma D, Kumar Sharma H, Chetia D. In vitro evaluation of the antimalarial activity of a designed novel quinuclidine derivative. Current Science. 2016; 111(12): 2028-30.
  • 20. Sharma M, Chauhan K, Srivastava RK, Singh SV, Srivastava K, Saxena JK, Puri SK, Chauhan PMS. Design and Synthesis of a New Class of 4-Aminoquinolinyl- and 9-Anilinoacridinyl Schiff Base Hydrazones as Potent Antimalarial Agents. Chemical Biology & Drug Design. 2014; 84(2): 175-81.
  • 21. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Staerk D, Jaroszewski JW, Ndangalasi H, Mbago F, Brun R, Christensen SB. Ancistrotanzanine C and related 5,1’- and 7,3’-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. Journal of Natural Products. 2004; 67(5): 743-8.
  • 22. Rathelot P, Vanelle P, Gasquet M, Delmas F, Crozet MP, Timon-David P, Maldonado J. Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. European Journal of Medicinal Chemistry. 1995; 30(6): 503-8.
  • 23. Tadele KT. Antioxidant Activity of Schiff Bases and Their Metal Complexes: A Recent Review. Journal of Pharmaceutical and Medicinal Research. 2017; 3(1): 73-7.
  • 24. Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Di Meo F, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. Journal of Computer-Aided Molecular Design. 2013; 27(11): 951-64.
  • 25. Guo Z, Xing R, Liu S, Yu H, Wang P, Li C, Li P. The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorganic & Medicinal Chemistry Letters. 2005; 15(20): 4600-3.
  • 26. Brodowska K, Sykuła A, Garribba E, Łodyga-Chruścińska E, Sójka M. Naringenin Schiff base: antioxidant activity, acid–base profile, and interactions with DNA. Transition Metal Chemistry. 2016; 41(2): 179-89.
  • 27. Ozdemir M, Sonmez M. Antioxidant Activity, Synthesis and Characterization of Schiff Base Ligand 'asasp' and Metal Complexes. Asian Journal of Chemistry. 2014; 26(20): 7009-15.
  • 28. Turan N, Bursal E, Çolak N, Buldurun K. Investigation of Synthesis, Structural Characterization, Antioxidant Activities and Thermal Properties of Zn(II), Fe(II) and Mn(II) Complexes with Thiophene-Carboxylate Ligand. Journal of Chemistry and Biochemistry. 2015; 3(2): 13-29.
  • 29. Liu G, Cogan D, Ellman JA. Catalytic asymmetric synthesis of tert-butanesulfinamide. Application to the asymmetric synthesis of amines. Journal of the American Chemical Society. 1997; 119(41): 9913-14.
  • 30. Cimarelli C, Palmieri G. Asymmetric reduction of enantiopure imines with zinc borohydride: stereoselective synthesis of chiral amines. Tetrahedron: Asymmetry. 2000; 11(12): 2555-63.
  • 31. Yendapally R, Hurdle JG, Carson EI, Lee RB, Lee RE. N-Substituted 3-Acetyltetramic Acid Derivatives as Antibacterial Agents. Journal of Medicinal Chemistry. 2008; 51(5): 1487-91.
  • 32. Barreau M, Commercon A, Mignani S, Mouysset D, Perfetti P, Stella L. Stereoselective synthesis of racemic α-amino-acid derivatives with a β-lactam skeleton: Application of the Staudinger reaction to chiral imines of methyl glyoxylate. Tetrahedron. 1998; 54(38): 11501-16.
  • 33. Hasegawa M, Taniyama D, Tomioka K. Facile Asymmetric Synthesis of α-Amino Acids Employing Chiral Ligand-Mediated Asymmetric Addition Reactions of Phenyllithium with Imines. Tetrahedron. 2000; 56(52): 10153-8.
  • 34. Blaney P, Grigg R, Rankovicb Z, Thornton-Petta M, Xu J. Fused and bridged bi- and tri-cyclic lactams via sequential metallo-azomethine ylide cycloaddition–lactamisation. Tetrahedron. 2002; 58(9): 1719-37.
  • 35. Grigg R, Sridharan V, Suganthan S, Bridge AW. Sequential and Cascade 1,3-Dipolar Cycloaddition-Palladium Catalysed Carbonylation-Cyclisation Reactions. Diastereospecific and Homochiral Processes. Tetrahedron. 1995; 51(1): 295-306.
  • 36. Davis FA, Sheppard AC. Applications of oxaziridines in organic synthesis. Tetrahedron. 1989; 45(18): 5703-42.
  • 37. Petrov VA, Resnati G. Polyfluorinated Oxaziridines:  Synthesis and Reactivity. Chemical Reviews. 1996; 96(5): 1809–23.
  • 38. Al-Garawi ZSM, Tomi IHR, Al-Daraji AHR. Synthesis and Characterization of New Amino Acid-Schiff Bases and Studies their Effects on the Activity of ACP, PAP and NPA Enzymes (In Vitro). E-Journal of Chemistry. 2012; 9(2): 962-9.
  • 39. Zhang L, Jiang H, Cao X, Zhao H, Wang F, Cui Y, Jiang B. Chiral gossypol derivatives: Evaluation of their anticancer activity and molecular modeling. European Journal of Medicinal Chemistry. 2009; 44(10): 3961-72.
  • 40. Xia L, Xia Y-F, Huang L-R, Xiao X, Lou H-Y, Liu T-J, Pan W-D, Luo H. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure microbicidal activity relationship. European Journal of Medicinal Chemistry. 2015; 97: 83-93.
  • 41. Kumar S, Priya Matharasi D, Gopi S, Sivakumar S, Narasimhan S. Synthesis of cytotoxic and antioxidant Schiff’s base analogs of aloin. Journal of Asian Natural Products Research. 2010; 12(5): 360-70.
  • 42. Joksovic MD, Bogdanovic G, Kojic V, Szecsenyi KM, Leovac VM, Jakimov D, Trifunovic S, Markovic V, Joksovica L. Synthesis, Cytotoxic Activity, and Thermal Studies of Novel N-[(1,3-Diphenylpyrazol-4-yl)methyl] α-Amino Acids. Journal of Heterocyclic Chemistry. 2010; 47(4): 850-6.
  • 43. Li L-J, Fu B, Qiao Y, Wang C, Huang Y-Y, Liu C-C, Tian C, Du J-L. Synthesis, characterization and cytotoxicity studies of platinum(II) complexes with reduced amino acid ester Schiff-bases as ligands. Inorganica Chimica Acta. 2014; 419: 135-40.
  • 44. Zhoua Y, Zhao M, Wub Y, Li C, Wub J, Zheng M, Peng L, Peng S. A class of novel Schiff’s bases: Synthesis, therapeutic action for chronic pain, anti-inflammation and 3D QSAR analysis. Bioorganic & Medicinal Chemistry. 2010; 18(6): 2165-72.
  • 45. Abdel-Rahman LH, Abu-Dief, AM, Ismael M, Mohamed MAA, Hashem NA. Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids. Journal of Molecular Structure. 2016; 1103(5): 232-44.

Erratum: Preparation and Anticancer Activities of Some Amino Acid Methyl Ester Schiff Bases

Year 2024, Volume: 11 Issue: 1, 999 - 999, 04.02.2024
The original article was published on January 1, 2018. https://dergipark.org.tr/en/pub/jotcsa/issue/33408/373904

Erratum Note

The title has been corrected in the PDF file, but the metadata still remains wrong. The corrected title is "Preparation and Cytotoxicity Evaluation of Some Amino Acid Methyl Ester Schiff Bases". Please be advised, Mr. Barbaros Akkurt, PhD Managing editor, JOTCSA

Abstract

In this study, we prepared nine Schiff bases by
condensation of amino acid methyl esters (isoleucine, phenylalanine and
methionine) with salicylaldehyde derivatives (2,4-dihydroxybenzaldehyde,
2-hydroxy-3-methoxybenzaldehyde and 5-bromo-2-hydroxybenzaldehyde) and
characterized by various spectroscopic methods (FT-IR, UV-Vis and NMR techniques).
FT-IR and UV-Vis spectra exhibited characteristic peaks for all imine
compounds. NMR spectra pointed out the imine bond which is the indicator of the
formation of Schiff bases. Besides, antiproliferative and cytotoxic features of
the Schiff bases were examined by using MTT cell proliferation and LDH
cytotoxicity assays, respectively. Amongst the synthesized Schiff bases, compound
3d exhibited a very strong
antiproliferative effect against all cells except A549. The experimental studies
revealed that the Schiff bases synthesized in this study, especially 3d, have an important potential to
enter drug development studies.

References

  • 1. Tidwell TT. Hugo (Ugo) Schiff, Schiff Bases and a Century of β-Lactam Synthesis. Angewandte Chemie International Edition. 2008; 47(6): 1016-20.
  • 2. Malladi S, Isloor AM, Isloor S, Akhila DS, Fun H-K, Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arabian Journal of Chemistry. 2013; 6(3): 335-40.
  • 3. Wang J, Lian Z, Wang H, Jin X, Liu Y. Synthesis and antimicrobial activity of Schiff base of chitosan and acylated chitosan. Journal of Applied Polymer Science. 2012; 123(6): 3242-47.
  • 4. Goszczyńska A, Kwiecień H, Fijałkowski K. Synthesis and antibacterial activity of Schiff bases and amines derived from alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates. Medicinal Chemistry Research. 2015; 24(9): 3561-77.
  • 5. Sikarwar P, Tomar S, Singh AP. Synthesis, Spectral Characterization and Antimicrobial Activity of Schiff Bases and Their Mixed Ligand Metal Complexes of Co(II), Ni(II), Cu(II) and Zn(II). American Journal of Chemistry. 2016; 6(5): 119-25.
  • 6. Chigurupati S. Designing New Vanillin Schiff Bases and their Antibacterial Studies. Journal of Medical and Bioengineering. 2015; 4(5): 363-6.
  • 7. Yang Q, Sun X, Liu Y, Chen B, Shen S. Synthesis and Antifungal Activity of Schiff Bases of 5-Ethoxycarbonylmethylsulfanyl-1,2,4-triazole. Chinese Journal of Applied Chemistry. 2014; 31(07): 788-92.
  • 8. Rehman W, Baloch MK, Muhammad B, Badshah A, Khan KM. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (IV) complexes. Chinese Science Bulletin. 2004; 49(2): 119-22.
  • 9. Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Pengcheng L. Antifungal properties of Schiff bases of chitosan, N -substituted chitosan and quaternized chitosan. Carbohydrate Research. 2007; 342(10): 1329-32.
  • 10. Karthikeyan MS, Prasad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorganic & Medicinal Chemistry. 2006; 14(22): 7482-9.
  • 11. Panneerselvam P, Nair RR, Vijayalakshmi G, Subramanian EH, Sridhar SK. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. European Journal of Medicinal Chemistry. 2005; 40(2): 225-9.
  • 12. Abd-Elzaher MM, Labib AA, Mousa HA, Moustafa SA, Ali MM, El-Rashedy AA. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni-Suef University Journal of Basic and Applied Sciences. 2016; 5(1): 85-96.
  • 13. Poonia K, Siddiqui S, Arshad M, Kumar D. In vitro anticancer activities of Schiff base and its lanthanum complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016; 155: 146-54.
  • 14. Shukla S, Srivastava RS, Shrivastava SK, Sodhi A, Kumar P. Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1,2-naphthoquinone. Medicinal Chemistry Research. 2013; 22(4): 1604-17.
  • 15. Emam SM, El Sayed IET, Ayad MI, Hathout HMR. Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine. Journal of Molecular Structure. 2017; 1146: 600-19.
  • 16. Kuzmin VE, Artemenko AG, Lozytska RN, Fedtchouk AS, Lozitsky VP, Muratov EN, Mescheriakov AK. Investigation of anticancer activity of macrocyclic Schiff bases by means of 4D-QSAR based on simplex representation of molecular structure. SAR and QSAR in Environmental Research. 2005; 16(3): 219-30.
  • 17. Luo H, Sui Y, Lin W-H, Wu H-Q. Study on the antiproliferative activity of four Schiff bases derived from natural biomass dehydroabiethylamine. Indian Journal of Chemistry. 2016; 55B(2): 248-51.
  • 18. Harpstrite SE, Collins SD, Oksman A, Goldberg DE, Sharma V. Synthesis, characterization, and antimalarial activity of novel schiff-base-phenol and naphthalene-amine ligands. Medicinal Chemistry. 2008; 4(4): 392-5.
  • 19. Sharma R, Goswami A, Rudrapal M, Sharma D, Kumar Sharma H, Chetia D. In vitro evaluation of the antimalarial activity of a designed novel quinuclidine derivative. Current Science. 2016; 111(12): 2028-30.
  • 20. Sharma M, Chauhan K, Srivastava RK, Singh SV, Srivastava K, Saxena JK, Puri SK, Chauhan PMS. Design and Synthesis of a New Class of 4-Aminoquinolinyl- and 9-Anilinoacridinyl Schiff Base Hydrazones as Potent Antimalarial Agents. Chemical Biology & Drug Design. 2014; 84(2): 175-81.
  • 21. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Staerk D, Jaroszewski JW, Ndangalasi H, Mbago F, Brun R, Christensen SB. Ancistrotanzanine C and related 5,1’- and 7,3’-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. Journal of Natural Products. 2004; 67(5): 743-8.
  • 22. Rathelot P, Vanelle P, Gasquet M, Delmas F, Crozet MP, Timon-David P, Maldonado J. Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. European Journal of Medicinal Chemistry. 1995; 30(6): 503-8.
  • 23. Tadele KT. Antioxidant Activity of Schiff Bases and Their Metal Complexes: A Recent Review. Journal of Pharmaceutical and Medicinal Research. 2017; 3(1): 73-7.
  • 24. Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Di Meo F, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. Journal of Computer-Aided Molecular Design. 2013; 27(11): 951-64.
  • 25. Guo Z, Xing R, Liu S, Yu H, Wang P, Li C, Li P. The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorganic & Medicinal Chemistry Letters. 2005; 15(20): 4600-3.
  • 26. Brodowska K, Sykuła A, Garribba E, Łodyga-Chruścińska E, Sójka M. Naringenin Schiff base: antioxidant activity, acid–base profile, and interactions with DNA. Transition Metal Chemistry. 2016; 41(2): 179-89.
  • 27. Ozdemir M, Sonmez M. Antioxidant Activity, Synthesis and Characterization of Schiff Base Ligand 'asasp' and Metal Complexes. Asian Journal of Chemistry. 2014; 26(20): 7009-15.
  • 28. Turan N, Bursal E, Çolak N, Buldurun K. Investigation of Synthesis, Structural Characterization, Antioxidant Activities and Thermal Properties of Zn(II), Fe(II) and Mn(II) Complexes with Thiophene-Carboxylate Ligand. Journal of Chemistry and Biochemistry. 2015; 3(2): 13-29.
  • 29. Liu G, Cogan D, Ellman JA. Catalytic asymmetric synthesis of tert-butanesulfinamide. Application to the asymmetric synthesis of amines. Journal of the American Chemical Society. 1997; 119(41): 9913-14.
  • 30. Cimarelli C, Palmieri G. Asymmetric reduction of enantiopure imines with zinc borohydride: stereoselective synthesis of chiral amines. Tetrahedron: Asymmetry. 2000; 11(12): 2555-63.
  • 31. Yendapally R, Hurdle JG, Carson EI, Lee RB, Lee RE. N-Substituted 3-Acetyltetramic Acid Derivatives as Antibacterial Agents. Journal of Medicinal Chemistry. 2008; 51(5): 1487-91.
  • 32. Barreau M, Commercon A, Mignani S, Mouysset D, Perfetti P, Stella L. Stereoselective synthesis of racemic α-amino-acid derivatives with a β-lactam skeleton: Application of the Staudinger reaction to chiral imines of methyl glyoxylate. Tetrahedron. 1998; 54(38): 11501-16.
  • 33. Hasegawa M, Taniyama D, Tomioka K. Facile Asymmetric Synthesis of α-Amino Acids Employing Chiral Ligand-Mediated Asymmetric Addition Reactions of Phenyllithium with Imines. Tetrahedron. 2000; 56(52): 10153-8.
  • 34. Blaney P, Grigg R, Rankovicb Z, Thornton-Petta M, Xu J. Fused and bridged bi- and tri-cyclic lactams via sequential metallo-azomethine ylide cycloaddition–lactamisation. Tetrahedron. 2002; 58(9): 1719-37.
  • 35. Grigg R, Sridharan V, Suganthan S, Bridge AW. Sequential and Cascade 1,3-Dipolar Cycloaddition-Palladium Catalysed Carbonylation-Cyclisation Reactions. Diastereospecific and Homochiral Processes. Tetrahedron. 1995; 51(1): 295-306.
  • 36. Davis FA, Sheppard AC. Applications of oxaziridines in organic synthesis. Tetrahedron. 1989; 45(18): 5703-42.
  • 37. Petrov VA, Resnati G. Polyfluorinated Oxaziridines:  Synthesis and Reactivity. Chemical Reviews. 1996; 96(5): 1809–23.
  • 38. Al-Garawi ZSM, Tomi IHR, Al-Daraji AHR. Synthesis and Characterization of New Amino Acid-Schiff Bases and Studies their Effects on the Activity of ACP, PAP and NPA Enzymes (In Vitro). E-Journal of Chemistry. 2012; 9(2): 962-9.
  • 39. Zhang L, Jiang H, Cao X, Zhao H, Wang F, Cui Y, Jiang B. Chiral gossypol derivatives: Evaluation of their anticancer activity and molecular modeling. European Journal of Medicinal Chemistry. 2009; 44(10): 3961-72.
  • 40. Xia L, Xia Y-F, Huang L-R, Xiao X, Lou H-Y, Liu T-J, Pan W-D, Luo H. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure microbicidal activity relationship. European Journal of Medicinal Chemistry. 2015; 97: 83-93.
  • 41. Kumar S, Priya Matharasi D, Gopi S, Sivakumar S, Narasimhan S. Synthesis of cytotoxic and antioxidant Schiff’s base analogs of aloin. Journal of Asian Natural Products Research. 2010; 12(5): 360-70.
  • 42. Joksovic MD, Bogdanovic G, Kojic V, Szecsenyi KM, Leovac VM, Jakimov D, Trifunovic S, Markovic V, Joksovica L. Synthesis, Cytotoxic Activity, and Thermal Studies of Novel N-[(1,3-Diphenylpyrazol-4-yl)methyl] α-Amino Acids. Journal of Heterocyclic Chemistry. 2010; 47(4): 850-6.
  • 43. Li L-J, Fu B, Qiao Y, Wang C, Huang Y-Y, Liu C-C, Tian C, Du J-L. Synthesis, characterization and cytotoxicity studies of platinum(II) complexes with reduced amino acid ester Schiff-bases as ligands. Inorganica Chimica Acta. 2014; 419: 135-40.
  • 44. Zhoua Y, Zhao M, Wub Y, Li C, Wub J, Zheng M, Peng L, Peng S. A class of novel Schiff’s bases: Synthesis, therapeutic action for chronic pain, anti-inflammation and 3D QSAR analysis. Bioorganic & Medicinal Chemistry. 2010; 18(6): 2165-72.
  • 45. Abdel-Rahman LH, Abu-Dief, AM, Ismael M, Mohamed MAA, Hashem NA. Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids. Journal of Molecular Structure. 2016; 1103(5): 232-44.
There are 45 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Erratum
Authors

Nilay Akkuş Taş This is me

Ayşegül Şenocak 0000-0001-9210-4621

Ali Aydın

Publication Date February 4, 2024
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

Vancouver Akkuş Taş N, Şenocak A, Aydın A. Preparation and Anticancer Activities of Some Amino Acid Methyl Ester Schiff Bases. JOTCSA. 2024;11(1):999-.