Review Article
BibTex RIS Cite

Examining Mathematical Models for Power Quality in Generation, Transmission, and Distribution Systems

Year 2023, Volume: 4 Issue: 2, 130 - 140, 21.12.2023
https://doi.org/10.53525/jster.1379621

Abstract

Power quality issues cause significant problems in production, transmission, and distribution electrical grids. To mitigate power quality problems, it is important to accurately identify and classify potential issues. There are many studies in this field. The initial research step in these studies is to obtain various distorted signals to test classification systems. In this context, the most common trend is to generate signals from mathematical models. In the literature, there are numerous models with significant differences among them. However, to our knowledge, there is no comprehensive model that considers all types of distortions. This study presents a comprehensive mathematical model based on existing models in the literature. Power quality disturbances can be generated rapidly and automatically. It is important to note that changes in the direction of power flow in the distribution network are not limited to the distribution network alone, especially when there is high distributed energy penetration; it can also extend to transmission or sub-transmission systems.

References

  • [1] A. Narang, “Impact of large scale distributed generation penetration on power system stability,” Natural Resources Canada, CETC, March 9, 2006.
  • [2] N. Patel, K. Gandhi, D. Mahida, P. Chudasama, “A review on power quality issues and standards”, International Research Journal of Engineering and Technology, vol. 4, pp. 247-250, 2017.
  • [3] M.I. Muhamad, N. Mariun, M.A.M Radzi, “The effects of power quality to the industries”, in Proc. 5th Student Conf. Research and Development, pp. 1-4, 2007.
  • [4] R. Igual et al., “Herramienta libre para el aprendizaje del efecto de los armónicos en los sistemas de potencia”, in Proc. XXIV Seminario Anual de Automática, Electrónica Industrial e Instrumentación, Valencia, pp. 43, 2017.
  • [5] IEEE. (2009). Recommended practice for monitoring electric power quality. [Online]. Available: http://ieeexplore.ieee.org/document/5154067/
  • [6] Cenelec. (2011) EN 50160. Voltage characteristics of electricity supplied by public distribution systems.
  • [7] O.P. Mahela, A.G. Shaik, N. Gupta, “A critical review of detection and classification of power quality events”, Renewable and Sustainable Energy Review, vol. 41, pp. 495-505, 2015.
  • [8] S.A. Deokar, L.M. Waghmare, “Integrated DWT–FFT approach for detection and classification of power quality disturbances”, Electrical Power and Energy Systems, vol. 61, pp. 594–605, 2014.
  • [9] Hossain, E., Tür, M. R., Padmanaban, S., Ay, S., & Khan, I. (2018). Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. Ieee Access, 6, 16816-16833.
  • [10] S. Naderian, A. Salemnia, “An implementation of type‐2 fuzzy kernel based support vector machine algorithm for power quality events classification”, International Transactions on Electrical Energy Systems, vol. 27(5), 2016.
  • [11] A.E. Lazzaretti, V.H., Ferreira, H. Vieira, “New trends in power quality event analysis: novelty detection and unsupervised classification”, Journal of Control, Automation and Electrical Systems, vol. 27(6), pp. 718–727, 2016.
  • [12] H. Eristi, Ö. Yıldırım, B. Eristi, Y. Demir, “Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines”, Electrical Power and Energy Systems, vol. 49, pp. 95–103, 2013.
  • [13] Tür, M. R., Mohammed, W., SHOBOLE, A. A., & Gündüz, H. (2021). Integration problems of photovoltaic systems-wind power, solutions and effects on power quality. European Journal of Technique (EJT), 10(2), 340-353.
  • [14] [4] J.G. Slootweg, S. de Haan, H. Polinder, W. Kling, Modeling new generation and storage technologies in power system dynamics simulations, in: Proceedings IEEE Summer Meeting, Chicago, July 2002.
  • [15] A. M. Azmy and I. Erlich, “Impact of distributed generation on the stability of electrical power system,” in Proc. IEEE Power Engineering Society General Meeting, vol. 2, pp. 1056–1063, June 2005.
  • [16] Syafii, K.M. Nor, M. Abdel-Akher, “Analysis of three phase distribution networks with distributed generation” IEEE 2nd International on Power and Energy Conference (PEC), pp.1563 – 1568, 2008.
  • [17] Liu Qingzhen, Cai Jinding, “A Integrated Power Flow Algorithm for Radial Distribution System with DGs Based on Voltage Regulating” Asia-Pacific Power and Energy Engineering Conference (APPEEC) pp.1-4, 2010
  • [18] M.Z. Kamh, R. Iravani, "A Unified Three-Phase Power-Flow Analysis Model For Electronically Coupled Distributed Energy Resources” , IEEE Trans. on Power Delivery vol. 26, no. 2 , pp. 899 – 909, 2011
  • [19] S. Elsaiah, M. Benidris, J.Mitra, “Power flow analysis of distribution systems with embedded induction generators” North American Power Symposium (NAPS), pp.1 – 6, 2012
  • [20] S. Khushalani, N. Schulz, “Unbalanced Distribution Power Flow with Distributed Generation” IEEE PES Transmission and Distribution Conference and Exhibition, 2005/2006 PP. 301 – 306, 2006
  • [21] S.A. Deokar, L.M. Waghmare, “Integrated DWT–FFT approach for detection and classification of power quality disturbances”, Electrical Power and Energy Systems, vol. 61, pp. 594–605, 2014.
  • [22] J.G.M.S. Decanini, M.S. Tonelli-Neto, F.C.V. Malange, C.R. Minussi, “Detection and classification of voltage disturbances using a fuzzy- ARTMAP-wavelet network”, Electric Power Systems Research, vol. 81, pp. 2057– 2065, Dec. 2011.
  • [23] K. Manimala, K. Selvi, R. Ahila, “Optimization techniques for improving power quality data mining using wavelet packet based support vector machine”, Neurocomputing, vol. 77, pp. 36–47, 2012.
  • [24] S. Naderian, A. Salemnia, “An implementation of type‐2 fuzzy kernel based support vector machine algorithm for power quality events classification”, International Transactions on Electrical Energy Sys., vol. 27(5), 2016.
  • [25] J. Li, Z. Teng, Q. Tang, J. Song, “Detection and Classification of Power Quality Disturbances Using Double Resolution S-Transform and DAGSVMs”, IEEE Transactions on Instrumentation and Measurement, Vol. 65(10), October 2016.
  • [26] N. Huang, D. Xu, X. Liu, L. Lin, “Power quality disturbances classification based on S-transform and probabilistic neural network”, Neurocomputing, vol. 98, pp. 12–23, 2012.
  • [27] Z. Moravej, M. Pazoki, A.A. Abdoos, “Wavelet transform and multiclass relevance vector machines based recognition and classification of power quality disturbances”, Euro. Trans. Electr. Power, vol. 21, pp. 212–222, 2011. [28] S. Khokhar, A.A.M. Zin, A.S. Mokhtar, N. Ismail, "MATLAB/Simulink based modeling and simulation of power quality disturbances," in Proc. IEEE Conf. on Energy Conversion (CENCON), Johor Bahru, pp. 445-450, 2014.
  • [29] Tur, M. R., & Bayindir, R. (2020, July). “Comparison of Power Quality Distortion Types and Methods Used in Classification”. In 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE) (pp. 1-7). IEEE.
  • [30] A. Milchevski, D. Kostadinov, D. Taskovski, “Classification of power quality disturbances using wavelets and support vector machine”, Elektronika ir Elektrotechnika, vol. 19(2), pp.25-30, 2013.
  • [31] M. Lopez-Ramirez, L. Ledesma-Carrillo, E. Cabal-Yepez, C. Rodriguez-Donate, H. Miranda-Vidales, A. Garcia-Perez, “EMDbased feature extraction for power quality disturbance classification using moments”, Energies, vol. 9(7), 565, 2016.
  • [32] X.S. Liu, B. Liu, D.G. Xu, “Recognition and Classification of Power Quality Disturbances on the basis of Pattern Linguistic Values”, J. Electr. Eng. Technol., vol. 11(2), pp. 309-319, 2016.
  • [33] C.Y. Lee, Y.X. Shen, “Optimal Feature Selection for Power-Quality Disturbances Classification”, IEEE Transactions on Power Delivery, vol. 26(4), October 2011.
  • [34] R. Kumar, B. Singh, D.T. Shahani, “Symmetrical components-based modified technique for power-quality disturbances detection and classification”, IEEE Transactions on Industry Applications, vol. 52(4), pp. 3443 – 3450, July/August 2016.
  • [35] O. Amanifar, M.E. Hamedani Golshan, \Optimal distributed generation placement and sizing for loss and THD reduction and voltage pro le improvement in distribution system using particle swarm optimization and sensitivity analysis", International Journal on Technical and Physical Problems of Engineering, Vol. 3, pp. 47{53, 2011.
  • [36] A. Eajal, M.E. El-Hawary, \Optimal capacitor placement and sizing in unbalanced distribution system with harmonic consideration using particle swarm optimization", IEEE Transactions on Power Delivery, Vol. 25, pp. 1734{1741, 2010.
  • [37] V. Miranda, \Wind power, distributed generation: new challengers, new solutions", Turkish Journal of Electrical Engineering, Vol. 14, pp. 455{473, 2006.
  • [38] Tur, M. R., & Yaprakdal, F. (2020). “Investigation of power quality in a system based on renewable energy sources.” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarim Ve Teknoloji, 8(3), 572-587.
  • [39] R. Igual, C. Medrano, F. J. Arcega and G. Mantescu, "Integral mathematical model of power quality disturbances," 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 2018, pp. 1-6, doi: 10.1109/ICHQP.2018.8378902
  • [40] Talha B.D, Mubashir S.M.K, Muhammad A, “Distributed energy systems: A review of classification, technologies, applications, and policies” Energy Strategy Reviews, Volume 48, 2023,101096, ISSN 2211-467X
  • [41] Y. Zhu, K. Tomsovic, “Adaptive power flow method for distribution systems with dispersed generation”, IEEE Trans. Power Deliv. 17 (3) (2002) 822–827.
  • [42] Chen Th, Chen Ms, Inoue T. ‘Three-phase cogenerator and transformer models for distribution system analysis’, IEEE Trans. Power Deliv., 1991, 6, (4), pp. 1671–1681
  • [43] Feijoo Ae, Cidras J ‘Modeling of wind farms in the load flow analysis’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 110–115
  • [44] Teng Jh: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 882–887
  • [45] Şener, B. (2017). Çift gözlü kapların parçalı bastırıcı ile derin çekilmesinde en iyileme amaçlı bir algoritma geliştirilmesi (Doctoral dissertation).
  • [46] Marco A. Et. Al. (2017), A novel methodology for modeling waveforms for power quality disturbance analysis, Electric Power Systems Research, Volume 143, 2017, 14-24, ISSN 0378-7796,
  • [47] Kitiş, U. (2020). Değişken yol şartlarında elektrikli araçların anlık moment ihtiyaçlarının Lyapunov tipi bir gözlemleyici ile tespiti ve kontrolü.
  • [48] M. Dai, M. N. Marwali, J. . -W. Jung and A. Keyhani, "Power flow control of a single distributed generation unit with nonlinear local load," IEEE PES Power Systems Conference and Exposition, 2004., New York, NY, USA, 2004, pp. 398-403 vol.1, doi: 10.1109/PSCE.2004.139764

Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi

Year 2023, Volume: 4 Issue: 2, 130 - 140, 21.12.2023
https://doi.org/10.53525/jster.1379621

Abstract

Güç kalitesi sorunları, üretim, iletim ve dağıtım elektrik şebekelerinde ciddi sorunlara neden olmaktadır. Güç kalitesi sorunlarını hafifletmek için olası sorunların doğru tespiti ve sınıflandırılması önemlidir. Bu alanda birçok çalışma bulunmaktadır. Bu çalışmalardaki ilk araştırma adımı, sınıflandırma sistemlerini test etmek için çeşitli bozulmuş sinyaller elde etmektir. Bu bağlamda, en yaygın eğilim matematiksel modellerden sinyal üretmektir. Literatürde, aralarında önemli farklar bulunan birçok model bulunmaktadır. Ancak bilgimize göre, tüm çeşitlerdeki bozulmaları dikkate alan bütüncül bir model bulunmamaktadır. Bu çalışma, literatürde bulunan modellere dayalı bütüncül bir matematiksel model sunmaktadır. Güç kalitesi bozulmaları hızlı ve otomatik bir şekilde üretilebilir. Dağıtım şebekesinde güç akışının yönündeki değişikliğin, sadece dağıtım ağıyla sınırlı olmadığını, özellikle dağıtık enerji penetrasyonu yüksek olduğunda iletim veya alt iletim sistemlerine de uzanabileceğini belirtmek önemlidir. Bu makale, planlama ve işletme sırasında güç akışı analizi için üretim türlerini ve modelleme tekniklerine genel bir bakış sunmaktadır. Ayrıca, farklı üretim teknolojileri vurgulanmakta, farklı modelleri sunulmakta ve mevcut akıllı şebeke ağlarına doğru olan mevcut eğilimlerle ilgili bazı temel zorluklar da tartışılmaktadır. Bu çalışma, gelecekteki çalışmalara destek olmayı amaçlayarak araştırmacıları modelleme aşamasında desteklemeyi hedeflemektedir

References

  • [1] A. Narang, “Impact of large scale distributed generation penetration on power system stability,” Natural Resources Canada, CETC, March 9, 2006.
  • [2] N. Patel, K. Gandhi, D. Mahida, P. Chudasama, “A review on power quality issues and standards”, International Research Journal of Engineering and Technology, vol. 4, pp. 247-250, 2017.
  • [3] M.I. Muhamad, N. Mariun, M.A.M Radzi, “The effects of power quality to the industries”, in Proc. 5th Student Conf. Research and Development, pp. 1-4, 2007.
  • [4] R. Igual et al., “Herramienta libre para el aprendizaje del efecto de los armónicos en los sistemas de potencia”, in Proc. XXIV Seminario Anual de Automática, Electrónica Industrial e Instrumentación, Valencia, pp. 43, 2017.
  • [5] IEEE. (2009). Recommended practice for monitoring electric power quality. [Online]. Available: http://ieeexplore.ieee.org/document/5154067/
  • [6] Cenelec. (2011) EN 50160. Voltage characteristics of electricity supplied by public distribution systems.
  • [7] O.P. Mahela, A.G. Shaik, N. Gupta, “A critical review of detection and classification of power quality events”, Renewable and Sustainable Energy Review, vol. 41, pp. 495-505, 2015.
  • [8] S.A. Deokar, L.M. Waghmare, “Integrated DWT–FFT approach for detection and classification of power quality disturbances”, Electrical Power and Energy Systems, vol. 61, pp. 594–605, 2014.
  • [9] Hossain, E., Tür, M. R., Padmanaban, S., Ay, S., & Khan, I. (2018). Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. Ieee Access, 6, 16816-16833.
  • [10] S. Naderian, A. Salemnia, “An implementation of type‐2 fuzzy kernel based support vector machine algorithm for power quality events classification”, International Transactions on Electrical Energy Systems, vol. 27(5), 2016.
  • [11] A.E. Lazzaretti, V.H., Ferreira, H. Vieira, “New trends in power quality event analysis: novelty detection and unsupervised classification”, Journal of Control, Automation and Electrical Systems, vol. 27(6), pp. 718–727, 2016.
  • [12] H. Eristi, Ö. Yıldırım, B. Eristi, Y. Demir, “Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines”, Electrical Power and Energy Systems, vol. 49, pp. 95–103, 2013.
  • [13] Tür, M. R., Mohammed, W., SHOBOLE, A. A., & Gündüz, H. (2021). Integration problems of photovoltaic systems-wind power, solutions and effects on power quality. European Journal of Technique (EJT), 10(2), 340-353.
  • [14] [4] J.G. Slootweg, S. de Haan, H. Polinder, W. Kling, Modeling new generation and storage technologies in power system dynamics simulations, in: Proceedings IEEE Summer Meeting, Chicago, July 2002.
  • [15] A. M. Azmy and I. Erlich, “Impact of distributed generation on the stability of electrical power system,” in Proc. IEEE Power Engineering Society General Meeting, vol. 2, pp. 1056–1063, June 2005.
  • [16] Syafii, K.M. Nor, M. Abdel-Akher, “Analysis of three phase distribution networks with distributed generation” IEEE 2nd International on Power and Energy Conference (PEC), pp.1563 – 1568, 2008.
  • [17] Liu Qingzhen, Cai Jinding, “A Integrated Power Flow Algorithm for Radial Distribution System with DGs Based on Voltage Regulating” Asia-Pacific Power and Energy Engineering Conference (APPEEC) pp.1-4, 2010
  • [18] M.Z. Kamh, R. Iravani, "A Unified Three-Phase Power-Flow Analysis Model For Electronically Coupled Distributed Energy Resources” , IEEE Trans. on Power Delivery vol. 26, no. 2 , pp. 899 – 909, 2011
  • [19] S. Elsaiah, M. Benidris, J.Mitra, “Power flow analysis of distribution systems with embedded induction generators” North American Power Symposium (NAPS), pp.1 – 6, 2012
  • [20] S. Khushalani, N. Schulz, “Unbalanced Distribution Power Flow with Distributed Generation” IEEE PES Transmission and Distribution Conference and Exhibition, 2005/2006 PP. 301 – 306, 2006
  • [21] S.A. Deokar, L.M. Waghmare, “Integrated DWT–FFT approach for detection and classification of power quality disturbances”, Electrical Power and Energy Systems, vol. 61, pp. 594–605, 2014.
  • [22] J.G.M.S. Decanini, M.S. Tonelli-Neto, F.C.V. Malange, C.R. Minussi, “Detection and classification of voltage disturbances using a fuzzy- ARTMAP-wavelet network”, Electric Power Systems Research, vol. 81, pp. 2057– 2065, Dec. 2011.
  • [23] K. Manimala, K. Selvi, R. Ahila, “Optimization techniques for improving power quality data mining using wavelet packet based support vector machine”, Neurocomputing, vol. 77, pp. 36–47, 2012.
  • [24] S. Naderian, A. Salemnia, “An implementation of type‐2 fuzzy kernel based support vector machine algorithm for power quality events classification”, International Transactions on Electrical Energy Sys., vol. 27(5), 2016.
  • [25] J. Li, Z. Teng, Q. Tang, J. Song, “Detection and Classification of Power Quality Disturbances Using Double Resolution S-Transform and DAGSVMs”, IEEE Transactions on Instrumentation and Measurement, Vol. 65(10), October 2016.
  • [26] N. Huang, D. Xu, X. Liu, L. Lin, “Power quality disturbances classification based on S-transform and probabilistic neural network”, Neurocomputing, vol. 98, pp. 12–23, 2012.
  • [27] Z. Moravej, M. Pazoki, A.A. Abdoos, “Wavelet transform and multiclass relevance vector machines based recognition and classification of power quality disturbances”, Euro. Trans. Electr. Power, vol. 21, pp. 212–222, 2011. [28] S. Khokhar, A.A.M. Zin, A.S. Mokhtar, N. Ismail, "MATLAB/Simulink based modeling and simulation of power quality disturbances," in Proc. IEEE Conf. on Energy Conversion (CENCON), Johor Bahru, pp. 445-450, 2014.
  • [29] Tur, M. R., & Bayindir, R. (2020, July). “Comparison of Power Quality Distortion Types and Methods Used in Classification”. In 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE) (pp. 1-7). IEEE.
  • [30] A. Milchevski, D. Kostadinov, D. Taskovski, “Classification of power quality disturbances using wavelets and support vector machine”, Elektronika ir Elektrotechnika, vol. 19(2), pp.25-30, 2013.
  • [31] M. Lopez-Ramirez, L. Ledesma-Carrillo, E. Cabal-Yepez, C. Rodriguez-Donate, H. Miranda-Vidales, A. Garcia-Perez, “EMDbased feature extraction for power quality disturbance classification using moments”, Energies, vol. 9(7), 565, 2016.
  • [32] X.S. Liu, B. Liu, D.G. Xu, “Recognition and Classification of Power Quality Disturbances on the basis of Pattern Linguistic Values”, J. Electr. Eng. Technol., vol. 11(2), pp. 309-319, 2016.
  • [33] C.Y. Lee, Y.X. Shen, “Optimal Feature Selection for Power-Quality Disturbances Classification”, IEEE Transactions on Power Delivery, vol. 26(4), October 2011.
  • [34] R. Kumar, B. Singh, D.T. Shahani, “Symmetrical components-based modified technique for power-quality disturbances detection and classification”, IEEE Transactions on Industry Applications, vol. 52(4), pp. 3443 – 3450, July/August 2016.
  • [35] O. Amanifar, M.E. Hamedani Golshan, \Optimal distributed generation placement and sizing for loss and THD reduction and voltage pro le improvement in distribution system using particle swarm optimization and sensitivity analysis", International Journal on Technical and Physical Problems of Engineering, Vol. 3, pp. 47{53, 2011.
  • [36] A. Eajal, M.E. El-Hawary, \Optimal capacitor placement and sizing in unbalanced distribution system with harmonic consideration using particle swarm optimization", IEEE Transactions on Power Delivery, Vol. 25, pp. 1734{1741, 2010.
  • [37] V. Miranda, \Wind power, distributed generation: new challengers, new solutions", Turkish Journal of Electrical Engineering, Vol. 14, pp. 455{473, 2006.
  • [38] Tur, M. R., & Yaprakdal, F. (2020). “Investigation of power quality in a system based on renewable energy sources.” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarim Ve Teknoloji, 8(3), 572-587.
  • [39] R. Igual, C. Medrano, F. J. Arcega and G. Mantescu, "Integral mathematical model of power quality disturbances," 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 2018, pp. 1-6, doi: 10.1109/ICHQP.2018.8378902
  • [40] Talha B.D, Mubashir S.M.K, Muhammad A, “Distributed energy systems: A review of classification, technologies, applications, and policies” Energy Strategy Reviews, Volume 48, 2023,101096, ISSN 2211-467X
  • [41] Y. Zhu, K. Tomsovic, “Adaptive power flow method for distribution systems with dispersed generation”, IEEE Trans. Power Deliv. 17 (3) (2002) 822–827.
  • [42] Chen Th, Chen Ms, Inoue T. ‘Three-phase cogenerator and transformer models for distribution system analysis’, IEEE Trans. Power Deliv., 1991, 6, (4), pp. 1671–1681
  • [43] Feijoo Ae, Cidras J ‘Modeling of wind farms in the load flow analysis’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 110–115
  • [44] Teng Jh: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 882–887
  • [45] Şener, B. (2017). Çift gözlü kapların parçalı bastırıcı ile derin çekilmesinde en iyileme amaçlı bir algoritma geliştirilmesi (Doctoral dissertation).
  • [46] Marco A. Et. Al. (2017), A novel methodology for modeling waveforms for power quality disturbance analysis, Electric Power Systems Research, Volume 143, 2017, 14-24, ISSN 0378-7796,
  • [47] Kitiş, U. (2020). Değişken yol şartlarında elektrikli araçların anlık moment ihtiyaçlarının Lyapunov tipi bir gözlemleyici ile tespiti ve kontrolü.
  • [48] M. Dai, M. N. Marwali, J. . -W. Jung and A. Keyhani, "Power flow control of a single distributed generation unit with nonlinear local load," IEEE PES Power Systems Conference and Exposition, 2004., New York, NY, USA, 2004, pp. 398-403 vol.1, doi: 10.1109/PSCE.2004.139764
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Power Plants
Journal Section Review Article
Authors

Mehmet Rıda Tür 0000-0001-5688-4624

Mehmet Salih Kaya 0009-0005-5091-3371

Publication Date December 21, 2023
Submission Date October 22, 2023
Acceptance Date December 10, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Tür, M. R., & Kaya, M. S. (2023). Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi. Journal of Science, Technology and Engineering Research, 4(2), 130-140. https://doi.org/10.53525/jster.1379621
AMA Tür MR, Kaya MS. Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi. JSTER. December 2023;4(2):130-140. doi:10.53525/jster.1379621
Chicago Tür, Mehmet Rıda, and Mehmet Salih Kaya. “Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi”. Journal of Science, Technology and Engineering Research 4, no. 2 (December 2023): 130-40. https://doi.org/10.53525/jster.1379621.
EndNote Tür MR, Kaya MS (December 1, 2023) Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi. Journal of Science, Technology and Engineering Research 4 2 130–140.
IEEE M. R. Tür and M. S. Kaya, “Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi”, JSTER, vol. 4, no. 2, pp. 130–140, 2023, doi: 10.53525/jster.1379621.
ISNAD Tür, Mehmet Rıda - Kaya, Mehmet Salih. “Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi”. Journal of Science, Technology and Engineering Research 4/2 (December 2023), 130-140. https://doi.org/10.53525/jster.1379621.
JAMA Tür MR, Kaya MS. Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi. JSTER. 2023;4:130–140.
MLA Tür, Mehmet Rıda and Mehmet Salih Kaya. “Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi”. Journal of Science, Technology and Engineering Research, vol. 4, no. 2, 2023, pp. 130-4, doi:10.53525/jster.1379621.
Vancouver Tür MR, Kaya MS. Üretim, İletim Ve Dağıtım Sistemlerinde Güç Kalitesi İçin Matematiksel Modellerin İncelenmesi. JSTER. 2023;4(2):130-4.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!