Research Article
BibTex RIS Cite

Defne atıklarının termoplastik kompozit üretiminde kullanılabilirliğinin araştırılması

Year 2023, Volume: 6 Issue: 2, 256 - 266, 29.12.2023
https://doi.org/10.33725/mamad.1390367

Abstract

Bu çalışmada, defne atıklarının termoplastik kompozit üretiminde kullanılabilirliği araştırılmıştır. Defne dal atığı ve yaprak atığı öğütülüp elendikten sonra, ağırlıkça %0-10-20-40 oranında yüksek yoğunluklu polietilen’e (YYPE) eklenerek ekstruderde karıştırıldı. Daha sonra, karışımlardan sıcak pres kalıplama tekniğine göre 250x250x3 mm ebatlarında levhalar üretildi. Saf YYPE’ye dal ve yaprak unu eklenmesi sonucunda çekme direnci azaldı. Çekme direnci YYPE levhada 22,28 MPa, %40 yaprak unu katkılı levhada 8,6 MPa olarak belirlendi. Saf YYPE’ye dal ve yaprak ununun eklenmesi sonucunda eğilme dirençleri önce arttı, sonra azaldı. En yüksek eğilme direnci %10 yaprak unu katkılısı ile 30.3 MPa, en düşük eğilme direnci %40 yaprak unu katkılısı ile 21.68 MPa olarak belirlendi. Shore D testi sonuçlarına göre dal unu ve yaprak unu saf YYPE’nin sertliğini arttırdı. Termal analiz sonuçlarına göre dal unu ve yaprak ununun YYPE’nin termal özelliklerine etkisinin sınırlı olduğu görüldü. Ayrıca taramalı elektron mikroskobu (SEM) görüntüleri YYPE ile dal ununun daha iyi karıştığını gösterdi.

Supporting Institution

İzmir Kâtip Çelebi Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü.

Project Number

2023-TYL-FEBE-0010

References

  • Acharjee, S. A., Bharali, P., Gogoi, B., Sorhie, V., Walling, B., Alemtoshi. (2023), PHA-based bioplastic: A potential alternative to address microplastic pollution, Water Air Soil Pollut, 234(1), 21, DOI: 10.1007/s11270-022-06029-2
  • Altuntaş, E., Arıkan, A. K. (2022), Investigation of expanded perlite usage in wood-plastic composite materials, Furniture and Wooden Material Research Journal, 5(2), 142-154, DOI: 10.33725/mamad.1208112
  • Altuntaş, E., Yılmaz, E., Salan, T. (2017), Investigation of the effect of high-fibrous filling material on the mechanical properties of wood plastic composites, Turkish Journal of Forestry, 18(3), 258-263, DOI: 10.18182/tjf.308969
  • Ashori, A., Nourbakhsh, A. (2010), Reinforced polypropylene composites: Effects of chemical compositions and particle size, Bioresour. Technol. 101, 2515–2519. DOI: 10.1016/j.biortech.2009.11.022
  • ASTM D2240, (2015), Standard test method for rubber property—durometer hardness, ASTM International, West Conshohocken, PA, USA.
  • ASTM D4703-16 (2016), Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets, ASTM, West Conshohocken, PA, USA.
  • ASTM D638-14 (2014), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017), Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, USA.
  • Bal, B. C. (2022), A research on some mechanical properties of composite material produced with linear low density polyethylene (LLDPE) and wood flour, Furniture and Wooden Material Research Journal, 5(1), 40-49, DOI: 10.33725/mamad.1126534
  • Bal, B. C. (2023), Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour, and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70-79, DOI: 10.33725/mamad.1301384
  • Çetin, N. S., Özmen, N., Narlıoğlu, N., Çavuş, V. (2014), Effect of bark flour on the mechanical properties of HDPE composites, Usak University Journal of Material Sciences, 3(1), 23-32, DOI: 10.12748/uujms.201416497
  • Hosseinihashemi, S. K., Arwinfar, F. (2023), Effect of fungal infection on physico-mechanical resistance of WPC made from thermally treated wood/PP, Furniture and Wooden Material Research Journal, 6(1), 90-103, DOI: 10.33725/mamad.1300208
  • Jayaraman, K., Bhattacharyya, D. (2004), Mechanical performance of woodfibre–waste plastic composite materials. Resources, Conservation and Recycling, 41(4), 307-319, DOI: 10.1016/j.resconrec.2003.12.001
  • Klyosov, A. A. (2007), Wood-plastic composites, John Wiley & Sons, DOI: 10.1002/9780470165935
  • Kuan, H. T. N., Tan, M. Y., Shen, Y., Yahya, M. Y. (2021), Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review, Composites and Advanced Materials, 30, DOI: 10.1177/26349833211007502
  • Matuana, L. M., Heiden, P. A. (2004), Wood Composites, Encyclopedia of Polymer Science and Technology, 12, 521-546, DOI: 10.1002/0471440264.pst474
  • Mu, B., Tang, W., Liu, T., Hao, X., Wang, Q., Ou, R. (2021), Comparative study of high-density polyethylene-based biocomposites reinforced with various agricultural residue fibers, Industrial Crops and Products, 172, 114053
  • Narlıoğlu, N. (2021), Evaluation of hornbeam (Carpinus betulus L.) wood sanding dust in thermoplastic composite produc, Furniture and Wooden Material Research Journal, 4 (1), 9-18, DOI: 10.33725/mamad.927157
  • Narlıoğlu, N., Çetin, N. S., Alma, M. H. (2018a), Effect of black pine sawdust on the mechanical properties of polypropylene composites, Furniture and Wooden Material Research Journal, 1(1), 38-45, DOI: 10.33725/mamad.433532
  • Narlıoğlu, N., Salan, T., Çetin, N. S., Alma, M. H. (2018b), Evaluation of furniture industry wastes in polymer composite production, Furniture and Wooden Material Research Journal, 1(2), 78-85, DOI: 10.33725/mamad.492418
  • Özmen, N., Çetin, N., Narlıoğlu, N., Çavuş, V., Altuntaş, E. (2014). Utilisation of MDF waste for wood plastic composites production, Turkish Journal of Forestry, 15(1), 65-71, DOI: 10.18182/tjf.64025
  • Ramesh, M., Rajeshkumar, L. N., Srinivasan, N., Kumar, D. V., Balaji, D. (2022), Influence of filler material on properties of fiber-reinforced polymer composites, e-Polymers, 22(1), 898-916, DOI: 10.1515/epoly-2022-0080
  • Saxena, M., Morchhale, R. K., Asokan, P., Prasad, B. K. (2008), Plant fiber—industrial waste reinforced polymer composites as a potential wood substitute material, Journal of composite materials, 42(4), 367-384, DOI: 10.1177/0021998307087014
  • Xu, H., Cheng, H., McClements, D. J., Chen, L., Long, J., Jin, Z. (2022), Enhancing the physicochemical properties and functional performance of starch-based films using inorganic carbon materials, Carbohydrate Polymers, 295, 119743, DOI: 10.1016/j.carbpol.2022.119743
  • Yao, F., Wu, Q., Lei, Y., Xu, Y. (2008), Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading, Industrial crops and products, 28(1), 63-72, DOI: 10.1016/j.indcrop.2008.01.007
  • Yılmaz, A., Çiftçi, V. (2021), Status of Laurel Plant (Laurus nobilis L.) in Turkey, European Journal of Science and Technology, (22), 325-330, DOI: 10.31590/ejosat. 856195
  • Zakaria, A. M., Jamaludin, M. A., Zakaria, M. N., Hassan, R., Bahari, S. A. (2022a), High Density Polyethylene (HDPE) composite mixed with Azadirachta excelsa (Sentang) tree waste flour: Mechanical and physical properties, Earth and Environmental Science, (951), 1, p.012045, DOI: 10.1088/1755-1315/951/1/012045
  • Zakaria, A. M., Jamaludin, M. A., Zakaria, M. Z., Hassan, R., Bahari, S. A. (2022b), Effect of incorporating different types of Sentang tree waste particle on the thermal stability of ood Polymer Composite (WPC), Earth and Environmental Science, (951), 1, p.012077.

Investigation of the usability of laurel waste in thermoplastic composite production

Year 2023, Volume: 6 Issue: 2, 256 - 266, 29.12.2023
https://doi.org/10.33725/mamad.1390367

Abstract

In this study, the usability of laurel waste in thermoplastic composite production was investigated. After the laurel branch waste and leaf waste were ground and sieved, they were added to high-density polyethylene (HDPE) at a rate of 0-10-20-40% by weight and mixed in an extruder. Then, boards with dimensions of 250x250x3 mm were produced from the mixtures according to the hot press molding technique. As a result of adding branch and leaf flour to neat HDPE, tensile strength decreased. The tensile strength was determined as 22.28 MPa in the HDPE board and 8.6 MPa in the 40% leaf flour added board. As a result of adding branch and leaf flour to neat HDPE, bending strength first increased and then decreased. The highest flexural strength was determined as 30.3 MPa with 10% leaf flour additive, and the lowest bending strength was determined as 21.68 MPa with 40% leaf flour additive. According to Shore D test results, branch flour and leaf flour increased the hardness of neat HDPE. According to the thermal analysis results, it was seen that the effect of branch flour and leaf flour on the thermal properties of HDPE was limited. In addition, scanning electron microscope (SEM) images showed that HDPE and branch flour mixed better.

Supporting Institution

Izmir Kâtip Çelebi University Scientific Research Projects Coordination Office.

Project Number

2023-TYL-FEBE-0010

References

  • Acharjee, S. A., Bharali, P., Gogoi, B., Sorhie, V., Walling, B., Alemtoshi. (2023), PHA-based bioplastic: A potential alternative to address microplastic pollution, Water Air Soil Pollut, 234(1), 21, DOI: 10.1007/s11270-022-06029-2
  • Altuntaş, E., Arıkan, A. K. (2022), Investigation of expanded perlite usage in wood-plastic composite materials, Furniture and Wooden Material Research Journal, 5(2), 142-154, DOI: 10.33725/mamad.1208112
  • Altuntaş, E., Yılmaz, E., Salan, T. (2017), Investigation of the effect of high-fibrous filling material on the mechanical properties of wood plastic composites, Turkish Journal of Forestry, 18(3), 258-263, DOI: 10.18182/tjf.308969
  • Ashori, A., Nourbakhsh, A. (2010), Reinforced polypropylene composites: Effects of chemical compositions and particle size, Bioresour. Technol. 101, 2515–2519. DOI: 10.1016/j.biortech.2009.11.022
  • ASTM D2240, (2015), Standard test method for rubber property—durometer hardness, ASTM International, West Conshohocken, PA, USA.
  • ASTM D4703-16 (2016), Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets, ASTM, West Conshohocken, PA, USA.
  • ASTM D638-14 (2014), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017), Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, USA.
  • Bal, B. C. (2022), A research on some mechanical properties of composite material produced with linear low density polyethylene (LLDPE) and wood flour, Furniture and Wooden Material Research Journal, 5(1), 40-49, DOI: 10.33725/mamad.1126534
  • Bal, B. C. (2023), Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour, and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70-79, DOI: 10.33725/mamad.1301384
  • Çetin, N. S., Özmen, N., Narlıoğlu, N., Çavuş, V. (2014), Effect of bark flour on the mechanical properties of HDPE composites, Usak University Journal of Material Sciences, 3(1), 23-32, DOI: 10.12748/uujms.201416497
  • Hosseinihashemi, S. K., Arwinfar, F. (2023), Effect of fungal infection on physico-mechanical resistance of WPC made from thermally treated wood/PP, Furniture and Wooden Material Research Journal, 6(1), 90-103, DOI: 10.33725/mamad.1300208
  • Jayaraman, K., Bhattacharyya, D. (2004), Mechanical performance of woodfibre–waste plastic composite materials. Resources, Conservation and Recycling, 41(4), 307-319, DOI: 10.1016/j.resconrec.2003.12.001
  • Klyosov, A. A. (2007), Wood-plastic composites, John Wiley & Sons, DOI: 10.1002/9780470165935
  • Kuan, H. T. N., Tan, M. Y., Shen, Y., Yahya, M. Y. (2021), Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review, Composites and Advanced Materials, 30, DOI: 10.1177/26349833211007502
  • Matuana, L. M., Heiden, P. A. (2004), Wood Composites, Encyclopedia of Polymer Science and Technology, 12, 521-546, DOI: 10.1002/0471440264.pst474
  • Mu, B., Tang, W., Liu, T., Hao, X., Wang, Q., Ou, R. (2021), Comparative study of high-density polyethylene-based biocomposites reinforced with various agricultural residue fibers, Industrial Crops and Products, 172, 114053
  • Narlıoğlu, N. (2021), Evaluation of hornbeam (Carpinus betulus L.) wood sanding dust in thermoplastic composite produc, Furniture and Wooden Material Research Journal, 4 (1), 9-18, DOI: 10.33725/mamad.927157
  • Narlıoğlu, N., Çetin, N. S., Alma, M. H. (2018a), Effect of black pine sawdust on the mechanical properties of polypropylene composites, Furniture and Wooden Material Research Journal, 1(1), 38-45, DOI: 10.33725/mamad.433532
  • Narlıoğlu, N., Salan, T., Çetin, N. S., Alma, M. H. (2018b), Evaluation of furniture industry wastes in polymer composite production, Furniture and Wooden Material Research Journal, 1(2), 78-85, DOI: 10.33725/mamad.492418
  • Özmen, N., Çetin, N., Narlıoğlu, N., Çavuş, V., Altuntaş, E. (2014). Utilisation of MDF waste for wood plastic composites production, Turkish Journal of Forestry, 15(1), 65-71, DOI: 10.18182/tjf.64025
  • Ramesh, M., Rajeshkumar, L. N., Srinivasan, N., Kumar, D. V., Balaji, D. (2022), Influence of filler material on properties of fiber-reinforced polymer composites, e-Polymers, 22(1), 898-916, DOI: 10.1515/epoly-2022-0080
  • Saxena, M., Morchhale, R. K., Asokan, P., Prasad, B. K. (2008), Plant fiber—industrial waste reinforced polymer composites as a potential wood substitute material, Journal of composite materials, 42(4), 367-384, DOI: 10.1177/0021998307087014
  • Xu, H., Cheng, H., McClements, D. J., Chen, L., Long, J., Jin, Z. (2022), Enhancing the physicochemical properties and functional performance of starch-based films using inorganic carbon materials, Carbohydrate Polymers, 295, 119743, DOI: 10.1016/j.carbpol.2022.119743
  • Yao, F., Wu, Q., Lei, Y., Xu, Y. (2008), Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading, Industrial crops and products, 28(1), 63-72, DOI: 10.1016/j.indcrop.2008.01.007
  • Yılmaz, A., Çiftçi, V. (2021), Status of Laurel Plant (Laurus nobilis L.) in Turkey, European Journal of Science and Technology, (22), 325-330, DOI: 10.31590/ejosat. 856195
  • Zakaria, A. M., Jamaludin, M. A., Zakaria, M. N., Hassan, R., Bahari, S. A. (2022a), High Density Polyethylene (HDPE) composite mixed with Azadirachta excelsa (Sentang) tree waste flour: Mechanical and physical properties, Earth and Environmental Science, (951), 1, p.012045, DOI: 10.1088/1755-1315/951/1/012045
  • Zakaria, A. M., Jamaludin, M. A., Zakaria, M. Z., Hassan, R., Bahari, S. A. (2022b), Effect of incorporating different types of Sentang tree waste particle on the thermal stability of ood Polymer Composite (WPC), Earth and Environmental Science, (951), 1, p.012077.
There are 28 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Forest Industry Engineering (Other)
Journal Section Articles
Authors

Nasır Narlıoğlu 0000-0002-1295-6558

Hüseyin Onur Sever This is me 0009-0008-2943-321X

Project Number 2023-TYL-FEBE-0010
Early Pub Date December 25, 2023
Publication Date December 29, 2023
Submission Date November 13, 2023
Acceptance Date December 8, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Narlıoğlu, N., & Sever, H. O. (2023). Investigation of the usability of laurel waste in thermoplastic composite production. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 6(2), 256-266. https://doi.org/10.33725/mamad.1390367

International Journal

18332  18333 TR DİZİN   18334  18335  18336 18434