Research Article
BibTex RIS Cite

Yüksek Yükseltici DA-DA Dönüştürücülerin Maksimum Güç Noktası İzleme Performansı Karşılaştırması

Year 2022, Volume: 5 Issue: 3, 1308 - 1319, 12.12.2022
https://doi.org/10.47495/okufbed.1037352

Abstract

Fotovoltaik (FV) ve rüzgar enerjisi gibi yenilenebilir enerji kaynakları (YEK'ler) düşük çıkış voltajına ve kesintili çıkış gücüne sahip olduğundan, çıkış voltajını artırmak ve maksimum gücü elde etmek için sıklıkla yükseltici DA-DA dönüştürücülerle donatılırlar. Bu çalışmada, FV destekli sistemlerde sıklıkla kullanılan yüksek gerilim kazançlı DA-DA dönüştürücülerin maksimum güç noktası izleme (MGİN) performans karşılaştırmaları sunulmuştur. Üç farklı yüksek kazançlı yükseltici DA-DA dönüştürücü topolojisi: (i) ikinci dereceden yükseltici dönüştürücü (QBC: quadratic boost converter), (ii) üç seviyeli yükseltici dönüştürücü (TLBC: three level boost converter), (iii) yığınlı yükseltici dönüştürücü (SBC: stacked boost converter), MGİN modu altında analiz edilmiştir. Değiştir ve Gözlemle (D&G) algoritmasını kullanır. Her bir dönüştürücü için MATLAB/Simulink ortamında 5,11, 4,61, 4,37, 3,87 ve 3,61 kW değerlerine sahip FV ile çalışan bir sistem modellenmiştir. İlgili topolojiler, aşağıdaki gibi aynı tasarım özellikleri dikkate alınarak simüle edilmiştir; 10 kHz anahtarlama frekansı, 1 mΩ Ron direnci. Yukarıda bahsedilen topolojilerin performans sonuçları, FV panelin maksimum gücü, dönüştürücülerin enerji verimliliği, çıkış voltajı dalgalanması ve çıkış akımı dalgalanması açısından karşılaştırılmıştır. Sonuçlar şunu ortaya koyuyor; TLBC, %98,9 dönüştürücü verimliliği ile FV panellerinden maksimum güç alır. SBC ve QBC, sırasıyla %98,1 ve %96,5 dönüştürücü verimliliği ile FV panellerinden minimum güç alır. Sonuç olarak, TLBC topolojisi, maksimum güç elde etme kapasitesi ve verimliliği ile öne çıkmaktadır.

References

  • Altin, N., & Ozturk, E. (2016). Maximum power point tracking quadratic boost converter for photovoltaic systems. Proceedings of the 8th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2016, 5–8. https://doi.org/10.1109/ECAI.2016.7861151
  • Evran, F., & Aydemir, M. T. (2014). Isolated high step-Up DC-DC converter with low voltage stress. IEEE Transactions on Power Electronics, 29(7), 3591–3603. https://doi.org/10.1109/TPEL.2013.2282813
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., & Lehman, B. (2017). Step-Up DC – DC Converters : A Comprehensive Review of Voltage-Boosting Techniques, and Applications. IEEE Transactions on Power Electronics, 32(12), 9143–9178.
  • Ganjavi, A., Ghoreishy, H., & Ahmad, A. A. (2018). A novel single-input dual-output three-level DC-DC converter. IEEE Transactions on Industrial Electronics, 65(10), 8101–8111. https://doi.org/10.1109/TIE.2018.2807384
  • Güngor, O., & Yüksek, H. İ. (2019). Modeling of Boost And Cuk Converters and Comparison Of Their Performance in Mppt. Sigma Journal of Engineering and Natural Sciences, 11(1), 83–101.
  • Guo, Z., Zarghami, M., Hou, S., & Chen, J. (2017). Model predictive control for three-level boost converter in photovoltaic systems. 2017 North American Power Symposium, NAPS 2017. https://doi.org/10.1109/NAPS.2017.8107188
  • Hernández-Callejo, L., Gallardo-Saavedra, S., & Alonso-Gómez, V. (2019). A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 188(June), 426–440. https://doi.org/10.1016/j.solener.2019.06.017
  • Hu, R., Zeng, J., Liu, J., Guo, Z., & Yang, N. (2020). An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor. IEEE Transactions on Power Electronics, 35(12), 13200–13209. https://doi.org/10.1109/TPEL.2020.2995911
  • İnci, M., Büyük, M., Savrun, M. M., & Demir, M. H. (2021). Design and analysis of fuel cell vehicle-to-grid (FCV2G) system with high voltage conversion interface for sustainable energy production. Sustainable Cities and Society, 67(December 2020). https://doi.org/10.1016/j.scs.2021.102753
  • Li, G., Jin, X., Chen, X., & Mu, X. (2020). A Novel Quadratic Boost Converter With Low Inductor Currents. CPSS Transactions on Power Electronics and Applications, 5(1), 1–10. https://doi.org/10.24295/cpsstpea.2020.00001
  • Mohamed, H. E., & Fardoun, A. A. (2016). High gain DC-DC converter for PV applications. Midwest Symposium on Circuits and Systems, 0(October), 16–19. https://doi.org/10.1109/MWSCAS.2016.7870100
  • Park, K. B., Moon, G. W., & Youn, M. J. (2011). Nonisolated high step-up stacked converter based on boost-integrated isolated converter. IEEE Transactions on Power Electronics, 26(2), 577–587. https://doi.org/10.1109/TPEL.2010.2066578
  • Raghavendran, S., Kumar, K. S., Tirupathi, A., & B, C. (2021). An Improved Three-level DC-DC Boost Converter for Renewable Energy Systems with High Gain. In 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies.
  • Salman, S., Ai, X., & Wu, Z. (2018). Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system. Protection and Control of Modern Power Systems, 3(1). https://doi.org/10.1186/s41601-018-0099-8
  • Savrun, M. M., & Atay, A. (2020). Multiport bidirectional DC-DC converter for PV powered electric vehicle equipped with battery and supercapacitor. IET Power Electronics, 13(17), 3931–3939. https://doi.org/10.1049/iet-pel.2020.0759
  • Schmitz, L., Martins, D. C., & Coelho, R. F. (2020). Comprehensive conception of high step-Up DC-DC converters with coupled inductor and voltage multipliers techniques. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(6), 2140–2151. https://doi.org/10.1109/TCSI.2020.2973154
  • Wang, Y., Qiu, Y., Bian, Q., Guan, Y., & Xu, D. (2019). A Single Switch Quadratic Boost High Step Up DC-DC Converter. IEEE Transactions on Industrial Electronics, 66(6), 4387–4397. https://doi.org/10.1109/TIE.2018.2860550
  • Wijeratne, D. S., & Moschopoulos, G. (2012). Quadratic power conversion for power electronics: Principles and circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(2), 426–438. https://doi.org/10.1109/TCSI.2011.2163976
  • Yang, D., Duan, B., Zhang, C., Shang, Y., Song, J., Bai, H., & Su, Q. (2021). High-Efficiency Bidirectional Three-Level Series-Resonant Converter with Buck-Boost Capacity for High-Output Voltage Applications. IEEE Transactions on Transportation Electrification, 7(3), 969–982. https://doi.org/10.1109/TTE.2021.3055208
  • Zdiri, M. A., Khelifi, B., Salem, F. Ben, & Abdallah, H. H. (2021). A Comparative Study of Distinct Advanced MPPT Algorithms for a PV Boost Converter. INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH, 11(3).

Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters

Year 2022, Volume: 5 Issue: 3, 1308 - 1319, 12.12.2022
https://doi.org/10.47495/okufbed.1037352

Abstract

Since renewable energy sources (RESs) such as photovoltaic (PV) and wind energy have low output voltage and intermittent output power, they are frequently equipped with step-up DC-DC converters to boost the output voltage and extract maximum power. In this study, maximum power point tracking (MPPT) performance comparisons of high voltage gain DC-DC converters, which are frequently used in PV-powered systems, have been presented. Three different high gain step-up DC-DC converter topologies: (i) quadratic boost converter (QBC), (ii) three level boost converter (TLBC), (iii) stacked boost converter (SBC) have been analysed under MPPT mode that uses the Perturb and Observe (P&O) algorithm. 5.11 kW PV-powered system has been modelled in the MATLAB/Simulink environment for each converter considering the same design specifications such as; 10 kHz switching frequency, 1 mΩ Ron resistance. The related topologies have been simulated under different irradiances: 1000, 900, 850, 750 and 700. Performance results of the aforementioned topologies have been compared in terms of the maximum power of PV panel, the energy efficiency of converters, output voltage ripple and output current ripple. The results reveal that; the TLBC extracts maximum power from PV panels with the converter efficiency 98.9%. The SBC and QBC extract minimum power from PV panels with the converter efficiency 98.1% and 96.5%, respectively. As a consequence, TLBC topology excels with the maximum power extraction capability and efficiency.

References

  • Altin, N., & Ozturk, E. (2016). Maximum power point tracking quadratic boost converter for photovoltaic systems. Proceedings of the 8th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2016, 5–8. https://doi.org/10.1109/ECAI.2016.7861151
  • Evran, F., & Aydemir, M. T. (2014). Isolated high step-Up DC-DC converter with low voltage stress. IEEE Transactions on Power Electronics, 29(7), 3591–3603. https://doi.org/10.1109/TPEL.2013.2282813
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., & Lehman, B. (2017). Step-Up DC – DC Converters : A Comprehensive Review of Voltage-Boosting Techniques, and Applications. IEEE Transactions on Power Electronics, 32(12), 9143–9178.
  • Ganjavi, A., Ghoreishy, H., & Ahmad, A. A. (2018). A novel single-input dual-output three-level DC-DC converter. IEEE Transactions on Industrial Electronics, 65(10), 8101–8111. https://doi.org/10.1109/TIE.2018.2807384
  • Güngor, O., & Yüksek, H. İ. (2019). Modeling of Boost And Cuk Converters and Comparison Of Their Performance in Mppt. Sigma Journal of Engineering and Natural Sciences, 11(1), 83–101.
  • Guo, Z., Zarghami, M., Hou, S., & Chen, J. (2017). Model predictive control for three-level boost converter in photovoltaic systems. 2017 North American Power Symposium, NAPS 2017. https://doi.org/10.1109/NAPS.2017.8107188
  • Hernández-Callejo, L., Gallardo-Saavedra, S., & Alonso-Gómez, V. (2019). A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 188(June), 426–440. https://doi.org/10.1016/j.solener.2019.06.017
  • Hu, R., Zeng, J., Liu, J., Guo, Z., & Yang, N. (2020). An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor. IEEE Transactions on Power Electronics, 35(12), 13200–13209. https://doi.org/10.1109/TPEL.2020.2995911
  • İnci, M., Büyük, M., Savrun, M. M., & Demir, M. H. (2021). Design and analysis of fuel cell vehicle-to-grid (FCV2G) system with high voltage conversion interface for sustainable energy production. Sustainable Cities and Society, 67(December 2020). https://doi.org/10.1016/j.scs.2021.102753
  • Li, G., Jin, X., Chen, X., & Mu, X. (2020). A Novel Quadratic Boost Converter With Low Inductor Currents. CPSS Transactions on Power Electronics and Applications, 5(1), 1–10. https://doi.org/10.24295/cpsstpea.2020.00001
  • Mohamed, H. E., & Fardoun, A. A. (2016). High gain DC-DC converter for PV applications. Midwest Symposium on Circuits and Systems, 0(October), 16–19. https://doi.org/10.1109/MWSCAS.2016.7870100
  • Park, K. B., Moon, G. W., & Youn, M. J. (2011). Nonisolated high step-up stacked converter based on boost-integrated isolated converter. IEEE Transactions on Power Electronics, 26(2), 577–587. https://doi.org/10.1109/TPEL.2010.2066578
  • Raghavendran, S., Kumar, K. S., Tirupathi, A., & B, C. (2021). An Improved Three-level DC-DC Boost Converter for Renewable Energy Systems with High Gain. In 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies.
  • Salman, S., Ai, X., & Wu, Z. (2018). Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system. Protection and Control of Modern Power Systems, 3(1). https://doi.org/10.1186/s41601-018-0099-8
  • Savrun, M. M., & Atay, A. (2020). Multiport bidirectional DC-DC converter for PV powered electric vehicle equipped with battery and supercapacitor. IET Power Electronics, 13(17), 3931–3939. https://doi.org/10.1049/iet-pel.2020.0759
  • Schmitz, L., Martins, D. C., & Coelho, R. F. (2020). Comprehensive conception of high step-Up DC-DC converters with coupled inductor and voltage multipliers techniques. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(6), 2140–2151. https://doi.org/10.1109/TCSI.2020.2973154
  • Wang, Y., Qiu, Y., Bian, Q., Guan, Y., & Xu, D. (2019). A Single Switch Quadratic Boost High Step Up DC-DC Converter. IEEE Transactions on Industrial Electronics, 66(6), 4387–4397. https://doi.org/10.1109/TIE.2018.2860550
  • Wijeratne, D. S., & Moschopoulos, G. (2012). Quadratic power conversion for power electronics: Principles and circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(2), 426–438. https://doi.org/10.1109/TCSI.2011.2163976
  • Yang, D., Duan, B., Zhang, C., Shang, Y., Song, J., Bai, H., & Su, Q. (2021). High-Efficiency Bidirectional Three-Level Series-Resonant Converter with Buck-Boost Capacity for High-Output Voltage Applications. IEEE Transactions on Transportation Electrification, 7(3), 969–982. https://doi.org/10.1109/TTE.2021.3055208
  • Zdiri, M. A., Khelifi, B., Salem, F. Ben, & Abdallah, H. H. (2021). A Comparative Study of Distinct Advanced MPPT Algorithms for a PV Boost Converter. INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH, 11(3).
There are 20 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section RESEARCH ARTICLES
Authors

Kenan Ayten

Murat Mustafa Savrun 0000-0001-5847-5082

Publication Date December 12, 2022
Submission Date December 16, 2021
Acceptance Date April 8, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Ayten, K., & Savrun, M. M. (2022). Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1308-1319. https://doi.org/10.47495/okufbed.1037352
AMA Ayten K, Savrun MM. Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1308-1319. doi:10.47495/okufbed.1037352
Chicago Ayten, Kenan, and Murat Mustafa Savrun. “Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1308-19. https://doi.org/10.47495/okufbed.1037352.
EndNote Ayten K, Savrun MM (December 1, 2022) Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1308–1319.
IEEE K. Ayten and M. M. Savrun, “Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1308–1319, 2022, doi: 10.47495/okufbed.1037352.
ISNAD Ayten, Kenan - Savrun, Murat Mustafa. “Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1308-1319. https://doi.org/10.47495/okufbed.1037352.
JAMA Ayten K, Savrun MM. Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1308–1319.
MLA Ayten, Kenan and Murat Mustafa Savrun. “Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1308-19, doi:10.47495/okufbed.1037352.
Vancouver Ayten K, Savrun MM. Maximum Power Point Tracking Performance Benchmarking of High Step-Up DC-DC Converters. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1308-19.

Cited By

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.