Research Article
BibTex RIS Cite

Evaluation of microwave pretreated waste dry fig for Biohydrogen production

Year 2023, Volume: 29 Issue: 7, 760 - 768, 30.12.2023

Abstract

In the study, the best conditions for aflatoxin removal and the highest dissolved sugar were determined by applying microwave pretreatment (250-800W) to waste dried figs. Biohydrogen production performances of aflatoxin-free dried figs were evaluated by testing different substrate (11.8-118 g/L) and different organism concentrations (0.5-2.5 g/L). The optimum microwave of the microwave pretreatment process, giving the highest dissolved sugar concentration (89.7 g/L) from 100 g/L waste dried figs was 400 W and the treatment time was 10 minutes. Under these conditions, 46.2% hydrolysis of sugars and 77.8% aflatoxin removal were achieved. At the initial substrate concentration of 59 g/L, the highest cumulative volume of hydrogen gas, hydrogen gas production yield, hydrogen gas production rate were found as 161.9 mL, 207.5 mL H2/g total sugar, 1.75 mL/hour, respectively. Although lactic acid was produced in high amounts from organic acids produced in experiments using different substrate concentrations, it has been observed that it is converted into butyric acid in some experiments. This resulted as an increase in biohydrogen gas production. In different organism amount experiments, it was observed that sugar was consumed in all experiments and hydrogen gas was produced successfully. Butyric acid was the main organic acid in the experimental media where the highest hydrogen gas production yield was produced in 1 g/L as 124.28 mL H2/g total sugar. The specific hydrogen gas production rate (SHPR) decreased with increasing organism concentrations. The highest SHPR was obtained with 0.5 g/L organism concentration as 3.83 mL H2/g biomass hour.

References

  • [1] Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB “Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment”. Bioresource Technology, 351, 1-11, 2022.
  • [2] Shao W, Wang Q, Rupani PF, Krishnan S, Ahmad F, Rezania S, Rashid MA, Sha C, Din MFM. “Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species”. Energy, 197, 3-9, 2020.
  • [3] Dursun N, Gülşen H. “Biyohidrojen üretim yöntemleri ve biyohidrojen üretiminde biyoreaktörlerin kullanımı”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 66-75, 2019.
  • [4] Kapdan İK, Kargı F “Bio-hydrogen production from waste materials”. Enzyme and Microbial Technology, 38(5), 569-82, 2006
  • [5] Ghosh S, Roy S. “Novel integration of biohydrogen production with fungal biodiesel production process”. Bioresource Technology, 288, 2-7, 2019.
  • [6] Azwar MY, Hussain MA, Abdul-Wahab AK “Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review”. Renewable and Sustainable Energy Reviews, 31, 158-173, 2014.
  • [7] Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA. “Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects”. Renerable and Sustainable Energy Reviews, 117, 1-10, 2020.
  • [8] Panin S, Setthapun W, Sinsuw AAE, Sintuya H, Chu CY. “Biohydrogen and biogas production from mashed and powdered vegetable residues by an enriched microflora in dark fermentation”. International Journal of Hydrogen Energy, 46(27), 14073-14082, 2020.
  • [9] Srivastava N, Srivastav, M, Abd_Allah EF, Singh R, Hashem A, Gupta VK. “Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach”. Chemosphere, 271, 3-7, 2021.
  • [10] Mahato RK, Kumar D, Rajagopalan G. “Biohydrogen production from fruit waste by Clostridium strain BOH3”. Renewable Energy, 153, 1368-1377, 2020.
  • [11] Wloch WC, Borowski S, Otlewska A. “Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation”. Renewable Energy, 153, 1226-1237, 2020.
  • [12] Saravanan A, Kumar PS, Khoo KS, Show PL, Carolin C F, Jackulin CF, Jeevanantham S, Karishma S, Show KY, Lee DJ, Chang JS. “Biohydrogen from organic wastes as a clean and environment-friendly energy source: production payhways, feedstock types, and future prospects”. Bioresource Technology, 342, 5-13, 2021.
  • [13] Silva JS, Mendes JS, Correia JAC, Rocha MVP, Micoli L. “Cashew appple baggase as new feedstock fort he hydrogen production using dark fermentation process”. Journal of Biotechnology, 286, 71-78, 2018.
  • [14] Amekan Y, Wangi DSAP, Cahyanto MN, Sarto-Widada J. “Effect of different ınoculum combination on biohydrogen production from melon fruit waste”. International Journal of Renewable Energy Development, 7(2), 101-109, 2018.
  • [15] Akinbomi J, Taherzadeh MJ. “Evaluation of fermentative hydrogen production from single and mixed fruit wastes”. Energies, 8(5), 4253-4272, 2015.
  • [16] Yasin NHM, Mumtaz T, Hassan M. “Food waste and food processing waste for biohydrogen production: a review”. Journal of Environmental Management, 130, 375-385, 2013.
  • [17] Bakirci GT. “Investigation of aflatoxins levels in commercial dried figs from western Turkey”. International Food Reserach Journal, 27(2), 245-251, 2020.
  • [18] Unusan N. “Systematic review of mycotoxins in food and feeds in Turkey”. Food Control, 97(12), 1-14, 2019.
  • [19] Celiktas MS. “Sequential techniques for aflatoxin contaminated Ficus carica L. to produce bioethanol”. Journal of Biobased Mater Bioenergy, 9(4), 410-416, 2015.
  • [20] Giorni P, Pietri A, Bertuzzi T, Soldano M, Piccinini S, Rossi L, Battilani P. “Fate of mycotoxins and related fungi in the anaerobic digestion process”. Bioresource Technology, 265, 554-557, 2018.
  • [21] Ferrara M, Haidukowski M, D’Imperio M, Parente A, De Angelis E, Monaci L, F.Logrieco A, Mule G. “New insight into microbial degradation of mycotoxin during anaerobic digestion”. Waste Management, 119, 215-225, 2021.
  • [22] Tacconi C, Cucina M, Pezzolla D, Zadra C, Gigliotti G “Effect of the mycotoxin aflatoxin B1 on a semi-continuous anaerobic digestion process”. Waste Management, 78, 467-473, 2018.
  • [23] Zhang Y, Li M, Liu Y, Guan E, Bian K. “Degradation of aflatoxin B1 by water-assisted microwave irradiation: Kinetics, products and pathways”. LWT-Food Science and Technology, 152, 5-8 2021.
  • [24] Zhang Y, Li M, Liu Y, Guan E, Bian K. “Reduction of aflatoxin B1 in Corn by water-assisted microwaves treatment and its effects on corn quality”. Toxins, 12(9), 1-10, 2020.
  • [25] Pluyer HR, Ahmed EM, Wei CI. “Destruction of aflatoxin on peanuts by oven and microwave roasting”. Journal of Food Protection, 50, 504-508, 1987.
  • [26] Farag RS, Rashed MM, Hgger AAA. “Aflatoxin destruction by microwave heating”. International Journal of Food Sciences and Nutrition, 47, 197-208, 1996.
  • [27] Özmıhçı S, Hacıoğlu İ, Altındağ EE. “Impacts of mycotoxin on biohydrogen production from waste dry fruits”. Journal Mater Cycles Waste Managment 24, 1736-1746, 2022.
  • [28] Eckert Carrie A, Cong T. Trinh, 1st ed. Biotechnology for biofuel production and optimization. USA, Elsevier, 2016.
  • [29] Eker S, Sarp M. “Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations”. International Journal of Hydrogen Energy, 42(4), 2562-2568, 2017.
  • [30] Argun H, Kargı F, Kapdan İK, Öztekin R. “Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations”. International Journal of Hydrogen Energy, 33(21), 6109-6115, 2008.
  • [31] Liu, Dawei, et al. Bio-Hydrogen Production By Dark Fermentation From Organic Wastes and Residues. Ph.D Thesis, DTU, Department of Environmental Engineering, KGS. Lyngby, Denmark, 2008.
  • [32] El-Wany Mahmoud. Hydrolysis of Rice Straw for Production of Soluble Sugars. MSc Thesis, The American University in Cario, School of Science and Engineering, Cario, Egypt 2021.
  • [33] Abibu WA, Karapınar İ. “Optimization of pretreatment conditions of fig (Figus carica) using autoclave and microwave treatments”. Biomass Conversion and Biorefinery. https://doi,org/10.1007.s13399-022-02688- 7, 2022.
  • [34] Detman, Anna, et al. "Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors". Microbial Cell Factories, 18(1), 1-12, 2019.
  • [35] Tao Y, Hu X, Zhu X, Jin H, Xu Z, Tang Q, Li X. “Production of Butyrate from Lactate by a Newly Isolated Clostridium sp. BPY5”. Applied Biochemistry and Biotechnology, 179, 361-374, 2016.

Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi

Year 2023, Volume: 29 Issue: 7, 760 - 768, 30.12.2023

Abstract

Çalışmada; atık kuru incirde mikrodalga ön işlemi (250-800W) uygulanarak aflotoksin giderimi ve en yüksek çözünmüş şeker eldesi için en iyi koşulları saptanmıştır. Aflatoksini giderilmiş atık kuru incirlerin biyohidrojen üretim performansları farklı substrat (11.8-118 g/L) ve farklı organizma konsantrasyonları (0.5-2.5 g/L) denenerek test edilmiştir. Mikrodalga işlemi sonucunda 100 g/L atık kuru incirden en yüksek çözünmüş şeker konsantrasyonunu (89.7 g/L) veren dalga boyu 400 W ve muamele süresi 10 dk. olarak bulunmuştur. Bu koşullarda %46.2 şeker hidrolizlenmesi ve %77.8 aflatoksin giderimi sağlanmıştır. En yüksek kümülatif hidrojen gazı hacmi, hidrojen gazı üretim verimi, hidrojen gazı üretim hızı; 59 g/L başlangıç substrat konsantrasyonunda sırasıyla, 161.9 mL, 207.5 mL H2/g toplam şeker, 1.75 mL/sa. olarak bulunmuştur. Farklı substrat konsantrasyonlarının kullanıldığı deneylerde üretilen organik asitlerden, laktik asidin yüksek miktarlarda üretiliyor olmasına rağmen, bazı deneylerde bütrik aside dönüştüğü gözlemlenmiştir. Bu da biyohidrojen gazı üretimlerinde artış sağlamıştır. Organizma miktarı değişim deneylerinde şekerin tüm deney ortamlarında tüketildiği gözlenmiş ve başarılı bir şekilde hidrojen gazı üretimi gerçekleşmiştir. Yoğunluklu olarak bütrik asit üretilen deney ortamlarında en yüksek hidrojen gazı üretim verimi 1 g/L organizma içeren deney ortamında 124.28 mL H2/g toplam şeker olarak elde edilmiştir. Organizma konsantrasyonu arttıkça spesifik hidrojen üretim hızında (SHÜH) düşüş gözlenmiştir. En yüksek SHÜH, 0.5 g/L organizma içeren fermentasyon ortamında 3.83 mL H2/g biyokütle saat olarak bulunmuştur.

References

  • [1] Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB “Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment”. Bioresource Technology, 351, 1-11, 2022.
  • [2] Shao W, Wang Q, Rupani PF, Krishnan S, Ahmad F, Rezania S, Rashid MA, Sha C, Din MFM. “Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species”. Energy, 197, 3-9, 2020.
  • [3] Dursun N, Gülşen H. “Biyohidrojen üretim yöntemleri ve biyohidrojen üretiminde biyoreaktörlerin kullanımı”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 66-75, 2019.
  • [4] Kapdan İK, Kargı F “Bio-hydrogen production from waste materials”. Enzyme and Microbial Technology, 38(5), 569-82, 2006
  • [5] Ghosh S, Roy S. “Novel integration of biohydrogen production with fungal biodiesel production process”. Bioresource Technology, 288, 2-7, 2019.
  • [6] Azwar MY, Hussain MA, Abdul-Wahab AK “Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review”. Renewable and Sustainable Energy Reviews, 31, 158-173, 2014.
  • [7] Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA. “Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects”. Renerable and Sustainable Energy Reviews, 117, 1-10, 2020.
  • [8] Panin S, Setthapun W, Sinsuw AAE, Sintuya H, Chu CY. “Biohydrogen and biogas production from mashed and powdered vegetable residues by an enriched microflora in dark fermentation”. International Journal of Hydrogen Energy, 46(27), 14073-14082, 2020.
  • [9] Srivastava N, Srivastav, M, Abd_Allah EF, Singh R, Hashem A, Gupta VK. “Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach”. Chemosphere, 271, 3-7, 2021.
  • [10] Mahato RK, Kumar D, Rajagopalan G. “Biohydrogen production from fruit waste by Clostridium strain BOH3”. Renewable Energy, 153, 1368-1377, 2020.
  • [11] Wloch WC, Borowski S, Otlewska A. “Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation”. Renewable Energy, 153, 1226-1237, 2020.
  • [12] Saravanan A, Kumar PS, Khoo KS, Show PL, Carolin C F, Jackulin CF, Jeevanantham S, Karishma S, Show KY, Lee DJ, Chang JS. “Biohydrogen from organic wastes as a clean and environment-friendly energy source: production payhways, feedstock types, and future prospects”. Bioresource Technology, 342, 5-13, 2021.
  • [13] Silva JS, Mendes JS, Correia JAC, Rocha MVP, Micoli L. “Cashew appple baggase as new feedstock fort he hydrogen production using dark fermentation process”. Journal of Biotechnology, 286, 71-78, 2018.
  • [14] Amekan Y, Wangi DSAP, Cahyanto MN, Sarto-Widada J. “Effect of different ınoculum combination on biohydrogen production from melon fruit waste”. International Journal of Renewable Energy Development, 7(2), 101-109, 2018.
  • [15] Akinbomi J, Taherzadeh MJ. “Evaluation of fermentative hydrogen production from single and mixed fruit wastes”. Energies, 8(5), 4253-4272, 2015.
  • [16] Yasin NHM, Mumtaz T, Hassan M. “Food waste and food processing waste for biohydrogen production: a review”. Journal of Environmental Management, 130, 375-385, 2013.
  • [17] Bakirci GT. “Investigation of aflatoxins levels in commercial dried figs from western Turkey”. International Food Reserach Journal, 27(2), 245-251, 2020.
  • [18] Unusan N. “Systematic review of mycotoxins in food and feeds in Turkey”. Food Control, 97(12), 1-14, 2019.
  • [19] Celiktas MS. “Sequential techniques for aflatoxin contaminated Ficus carica L. to produce bioethanol”. Journal of Biobased Mater Bioenergy, 9(4), 410-416, 2015.
  • [20] Giorni P, Pietri A, Bertuzzi T, Soldano M, Piccinini S, Rossi L, Battilani P. “Fate of mycotoxins and related fungi in the anaerobic digestion process”. Bioresource Technology, 265, 554-557, 2018.
  • [21] Ferrara M, Haidukowski M, D’Imperio M, Parente A, De Angelis E, Monaci L, F.Logrieco A, Mule G. “New insight into microbial degradation of mycotoxin during anaerobic digestion”. Waste Management, 119, 215-225, 2021.
  • [22] Tacconi C, Cucina M, Pezzolla D, Zadra C, Gigliotti G “Effect of the mycotoxin aflatoxin B1 on a semi-continuous anaerobic digestion process”. Waste Management, 78, 467-473, 2018.
  • [23] Zhang Y, Li M, Liu Y, Guan E, Bian K. “Degradation of aflatoxin B1 by water-assisted microwave irradiation: Kinetics, products and pathways”. LWT-Food Science and Technology, 152, 5-8 2021.
  • [24] Zhang Y, Li M, Liu Y, Guan E, Bian K. “Reduction of aflatoxin B1 in Corn by water-assisted microwaves treatment and its effects on corn quality”. Toxins, 12(9), 1-10, 2020.
  • [25] Pluyer HR, Ahmed EM, Wei CI. “Destruction of aflatoxin on peanuts by oven and microwave roasting”. Journal of Food Protection, 50, 504-508, 1987.
  • [26] Farag RS, Rashed MM, Hgger AAA. “Aflatoxin destruction by microwave heating”. International Journal of Food Sciences and Nutrition, 47, 197-208, 1996.
  • [27] Özmıhçı S, Hacıoğlu İ, Altındağ EE. “Impacts of mycotoxin on biohydrogen production from waste dry fruits”. Journal Mater Cycles Waste Managment 24, 1736-1746, 2022.
  • [28] Eckert Carrie A, Cong T. Trinh, 1st ed. Biotechnology for biofuel production and optimization. USA, Elsevier, 2016.
  • [29] Eker S, Sarp M. “Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations”. International Journal of Hydrogen Energy, 42(4), 2562-2568, 2017.
  • [30] Argun H, Kargı F, Kapdan İK, Öztekin R. “Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations”. International Journal of Hydrogen Energy, 33(21), 6109-6115, 2008.
  • [31] Liu, Dawei, et al. Bio-Hydrogen Production By Dark Fermentation From Organic Wastes and Residues. Ph.D Thesis, DTU, Department of Environmental Engineering, KGS. Lyngby, Denmark, 2008.
  • [32] El-Wany Mahmoud. Hydrolysis of Rice Straw for Production of Soluble Sugars. MSc Thesis, The American University in Cario, School of Science and Engineering, Cario, Egypt 2021.
  • [33] Abibu WA, Karapınar İ. “Optimization of pretreatment conditions of fig (Figus carica) using autoclave and microwave treatments”. Biomass Conversion and Biorefinery. https://doi,org/10.1007.s13399-022-02688- 7, 2022.
  • [34] Detman, Anna, et al. "Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors". Microbial Cell Factories, 18(1), 1-12, 2019.
  • [35] Tao Y, Hu X, Zhu X, Jin H, Xu Z, Tang Q, Li X. “Production of Butyrate from Lactate by a Newly Isolated Clostridium sp. BPY5”. Applied Biochemistry and Biotechnology, 179, 361-374, 2016.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering (Other)
Journal Section Research Article
Authors

Serpil Özmıhçı

İlknur Hacıoğlu This is me

Publication Date December 30, 2023
Published in Issue Year 2023 Volume: 29 Issue: 7

Cite

APA Özmıhçı, S., & Hacıoğlu, İ. (2023). Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(7), 760-768.
AMA Özmıhçı S, Hacıoğlu İ. Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2023;29(7):760-768.
Chicago Özmıhçı, Serpil, and İlknur Hacıoğlu. “Mikrodalga ön işleminden geçirilmiş atık Kuru Incirin Biyohidrojen üretimi için değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 7 (December 2023): 760-68.
EndNote Özmıhçı S, Hacıoğlu İ (December 1, 2023) Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 7 760–768.
IEEE S. Özmıhçı and İ. Hacıoğlu, “Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 7, pp. 760–768, 2023.
ISNAD Özmıhçı, Serpil - Hacıoğlu, İlknur. “Mikrodalga ön işleminden geçirilmiş atık Kuru Incirin Biyohidrojen üretimi için değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/7 (December 2023), 760-768.
JAMA Özmıhçı S, Hacıoğlu İ. Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:760–768.
MLA Özmıhçı, Serpil and İlknur Hacıoğlu. “Mikrodalga ön işleminden geçirilmiş atık Kuru Incirin Biyohidrojen üretimi için değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 7, 2023, pp. 760-8.
Vancouver Özmıhçı S, Hacıoğlu İ. Mikrodalga ön işleminden geçirilmiş atık kuru incirin biyohidrojen üretimi için değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(7):760-8.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif