Research Article
BibTex RIS Cite

Bir Düz Flaplı Simetrik Kanat Profilinin Aerodinamik Karakteristiğine Kiriş Yapısı Etkisinin İncelenmesi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1159822

Abstract

Bu çalışmada düz flapa sahip bir NACA 0018 kanat profilin aerodinamik performansına kiriş etkisi iki boyutlu olarak Hesaplamalı Akışkanlar Dinamiği yöntemi ile incelenmiştir. Ağ yapısından bağımsızlığa ulaşıldıktan sonra deneysel çalışma Spalart-Allmaras türbülans modeli ile doğrulanmıştır. M1 (düz flapsız ve kiriş yapısız kanat), M2 (kiriş yapısına sahip kanat), M3 ( düz flaplı kanat) ve M4 (düz flaplı ve kiriş yapısına sahip kanat) olmak üzere 4 farklı kanat yapısı modellenmiştir. Kanatların aerodinamik performansları kaldırma katsayısının sürükleme katsayısına oranı (C_L/C_D) bulunarak hesaplanmıştır. Çalışmanın sonucunda düz flap yapısı, kaldırma katsayısı (C_L) ve sürükleme katsayısını (C_D) önemli ölçüde arttırmıştır. Kiriş yapısı düz flapa sahip olmayan kanadın aerodinamik performansını atak açısı 12°’den büyük olduğunda arttırmışken, flap yapısına sahip olan kanadın aerodinamik performansını neredeyse bütün atak açılarında yükseltmiştir. Aynı zamanda kiriş yapısı, bütün atak açıkarında düz flapa sahip olan kanatta gözlemlenen C_D değerlerini azaltmış ve atak açısı 2°’den büyük olduğu durumda C_L değerlerini arttırmıştır.

References

  • [1] Burton T., Jenkins N., Sharpe D. and Bossanyi E., "Wind Energy Handbook. 2nd Edition", John Wiley & Sons, Ltd., (2011).
  • [2] McGhee RJ. and Beasley WD., "Low-Speed Aerodynamic Characteristiscs of a 17%-thick-airfoil section for general aviation applications", Nasa Tn D-7428, (1973).
  • [3] Şahin İ. and Acir A., "Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil", Int J Mater Mech Manuf, 3:22–25, (2015).
  • [4] Lopes AMG. and Alé JAV., "Numerical simulation of the aerodynamic characteristics of the NACA 0018 airfoil at medium range Reynolds number", Wind Eng, (2022).
  • [5] Chakroun Y and Bangga G., "Aerodynamic characteristics of airfoil and vertical axis wind turbine employed with gurney flaps", Sustain, 13, (2021).
  • [6] Hunsaker DF., Reid JT., Moorthamers B. and Joo JJ., "Geometry and aerodynamic performance of parabolic trailing-edge flaps", AIAA Aerosp Sci Meet, (2018).
  • [7] TANÜRÜN HE., AKIN A. and ACIR A., "Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi", J Polytech, 24(3): 1219–1226, (2021).
  • [8] Venkatesan SP., Kumar VP., Kumar MS. and Kumar S., "Computational analysis of aerodynamic characteristics of dimple airfoil NACA 2412 at various angles of attack", Int J Mech Eng Technol, IJMET, 9:41–49, (2018).
  • [9] Wang Y., Shen S., Li G., Huang D. and Zheng Z., "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes", Renew Energy, 126:801–818, (2018).
  • [10] Mohamed OS., Ibrahim AA., Etman AK., Abdelfatah AA. and Elbaz AMR. "Numerical investigation of Darrieus wind turbine with slotted airfoil blades", Energy Convers Manag X, 5:100026, (2020).
  • [11] Li X., Yang K. and Wang X., "Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance", Energies , 12(5), (2019).
  • [12] Villalpando F., Reggio M. and Ilinca A., "Assessment of turbulence models for flow simulation around a wind turbine airfoil", Model Simul Eng, (2011).
  • [13] Genç MS., Özişik G. and Kahraman N., "DÜZ FLAPLI NACA0012 KANAT PROFİLİNİN AERODİNAMİK PERFORMANSININ İNCELENMESİ", Isi Bilim Ve Tek Dergisi/ J Therm Sci Technol, 28:1-8, (2008).
  • [14] Priyanka R. and Sivapragasam M., "Multi-fidelity surrogate model-based airfoil optimization at a transitional low Reynolds number", Sādhanā, 46(1), 1-19, (2021).
  • [15] Shukla V. and Kaviti AK,. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models", Energy, 126: 766-795, (2017).
  • [16] Timmer WA., "Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018", Wind Eng, 32:525-537, (2008).
  • [17] Aziz PDA., Mohamad AKR., Hamidon FZ., Mohamad N., Salleh N and Yunus NM., "A simulation study on airfoils using VAWT design for low wind speed application", 4th Int Conf Eng Technol Technopreneuship ICE2T, 105-109, (2014).
  • [18] Acarer S., "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines", Energy, 201:117659, (2020).
  • [19] Yao Ji., Yuan Weibin., Wang jianliang., Xie Jianbin., Zhou Haipeng., Peng Mingjun., Sun Yong., "Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils ", Procedia Engineering, 31:80-86, (2012).
  • [20] Sher Afghan Khan., Musavir Bashir., Maughal Ahmed Ali Baig., Fharukh Ahmed Ghasi Mehaboob Ali., "Comparing the Effect of Different Turbulence Models on The CFD Predictions of NACA0018 Airfoil Aerodynamics", CFD Letters, 12(3): 1-10, (2020).

Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1159822

Abstract

In this paper, two-dimensional computational fluid dynamics analyses were conducted to examine the rib effect on the performance of the NACA 0018 plain flapped airfoil. A mesh independence study was carried out and the Spalart-Allmaras turbulence model was selected for validation. Four various airfoil models were designed: M1 (airfoil without plain flap and rib structure), M2 (airfoil with rib structure), M3 (airfoil with a plain flap) and M4 (airfoil with a rib structure and plain flap). The performance of designed airfoils was calculated in terms of lift-to-drag (C_L/C_D) ratio. As a result, the plain flap significantly increased the lift coefficient (C_L) and drag coefficient (C_D). While the rib structure enhanced the aerodynamic performance of the non-flapped airfoil when the attack angle was greater than 12°, it increased the performance of the plain flapped airfoil at almost all attack angles. Furthermore, it was seen that the rib structure decreased C_D values of plain flapped airfoil at all attack angles and increased C_L values of plain flapped airfoil when the attack angle was greater than 2°.

References

  • [1] Burton T., Jenkins N., Sharpe D. and Bossanyi E., "Wind Energy Handbook. 2nd Edition", John Wiley & Sons, Ltd., (2011).
  • [2] McGhee RJ. and Beasley WD., "Low-Speed Aerodynamic Characteristiscs of a 17%-thick-airfoil section for general aviation applications", Nasa Tn D-7428, (1973).
  • [3] Şahin İ. and Acir A., "Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil", Int J Mater Mech Manuf, 3:22–25, (2015).
  • [4] Lopes AMG. and Alé JAV., "Numerical simulation of the aerodynamic characteristics of the NACA 0018 airfoil at medium range Reynolds number", Wind Eng, (2022).
  • [5] Chakroun Y and Bangga G., "Aerodynamic characteristics of airfoil and vertical axis wind turbine employed with gurney flaps", Sustain, 13, (2021).
  • [6] Hunsaker DF., Reid JT., Moorthamers B. and Joo JJ., "Geometry and aerodynamic performance of parabolic trailing-edge flaps", AIAA Aerosp Sci Meet, (2018).
  • [7] TANÜRÜN HE., AKIN A. and ACIR A., "Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi", J Polytech, 24(3): 1219–1226, (2021).
  • [8] Venkatesan SP., Kumar VP., Kumar MS. and Kumar S., "Computational analysis of aerodynamic characteristics of dimple airfoil NACA 2412 at various angles of attack", Int J Mech Eng Technol, IJMET, 9:41–49, (2018).
  • [9] Wang Y., Shen S., Li G., Huang D. and Zheng Z., "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes", Renew Energy, 126:801–818, (2018).
  • [10] Mohamed OS., Ibrahim AA., Etman AK., Abdelfatah AA. and Elbaz AMR. "Numerical investigation of Darrieus wind turbine with slotted airfoil blades", Energy Convers Manag X, 5:100026, (2020).
  • [11] Li X., Yang K. and Wang X., "Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance", Energies , 12(5), (2019).
  • [12] Villalpando F., Reggio M. and Ilinca A., "Assessment of turbulence models for flow simulation around a wind turbine airfoil", Model Simul Eng, (2011).
  • [13] Genç MS., Özişik G. and Kahraman N., "DÜZ FLAPLI NACA0012 KANAT PROFİLİNİN AERODİNAMİK PERFORMANSININ İNCELENMESİ", Isi Bilim Ve Tek Dergisi/ J Therm Sci Technol, 28:1-8, (2008).
  • [14] Priyanka R. and Sivapragasam M., "Multi-fidelity surrogate model-based airfoil optimization at a transitional low Reynolds number", Sādhanā, 46(1), 1-19, (2021).
  • [15] Shukla V. and Kaviti AK,. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models", Energy, 126: 766-795, (2017).
  • [16] Timmer WA., "Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018", Wind Eng, 32:525-537, (2008).
  • [17] Aziz PDA., Mohamad AKR., Hamidon FZ., Mohamad N., Salleh N and Yunus NM., "A simulation study on airfoils using VAWT design for low wind speed application", 4th Int Conf Eng Technol Technopreneuship ICE2T, 105-109, (2014).
  • [18] Acarer S., "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines", Energy, 201:117659, (2020).
  • [19] Yao Ji., Yuan Weibin., Wang jianliang., Xie Jianbin., Zhou Haipeng., Peng Mingjun., Sun Yong., "Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils ", Procedia Engineering, 31:80-86, (2012).
  • [20] Sher Afghan Khan., Musavir Bashir., Maughal Ahmed Ali Baig., Fharukh Ahmed Ghasi Mehaboob Ali., "Comparing the Effect of Different Turbulence Models on The CFD Predictions of NACA0018 Airfoil Aerodynamics", CFD Letters, 12(3): 1-10, (2020).
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Fatih Kaya 0000-0002-7888-0250

Early Pub Date March 27, 2024
Publication Date
Submission Date August 9, 2022
Published in Issue Year 2024 EARLY VIEW

Cite

APA Kaya, A. F. (2024). Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1159822
AMA Kaya AF. Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Politeknik Dergisi. Published online March 1, 2024:1-1. doi:10.2339/politeknik.1159822
Chicago Kaya, Ahmet Fatih. “Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil”. Politeknik Dergisi, March (March 2024), 1-1. https://doi.org/10.2339/politeknik.1159822.
EndNote Kaya AF (March 1, 2024) Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Politeknik Dergisi 1–1.
IEEE A. F. Kaya, “Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil”, Politeknik Dergisi, pp. 1–1, March 2024, doi: 10.2339/politeknik.1159822.
ISNAD Kaya, Ahmet Fatih. “Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil”. Politeknik Dergisi. March 2024. 1-1. https://doi.org/10.2339/politeknik.1159822.
JAMA Kaya AF. Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Politeknik Dergisi. 2024;:1–1.
MLA Kaya, Ahmet Fatih. “Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1159822.
Vancouver Kaya AF. Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Politeknik Dergisi. 2024:1-.