Research Article
BibTex RIS Cite

Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method

Year 2024, Volume: 28 Issue: 2, 283 - 293, 30.04.2024
https://doi.org/10.16984/saufenbilder.1271095

Abstract

The low-cost and mass production of graphene has gained importance in recent years. The electrochemical exfoliation method, one of the graphene production methods, is an efficient technique used to obtain low-cost-effective and large quantities of graphene nanosheets. Exfoliation parameters affect the properties of exfoliated graphene nanosheets. In this study, graphene production is fabricated by the method of exfoliation using electrolyte and voltage parameters. For this, a pen tip was used instead of pure platinum, which is very expensive, at the cathode. The structural research was done by X-ray diffraction spectroscopy (XRD), Raman spectroscopy and Fourier Transform Infrared Spectrometer (F-TIR). Morphological analyses were carried out by Scanning Electron Microscopy (SEM). The number of layers and crystallite of graphene layers were estimated. The obtained results were compared with the results of the other similar studies. Analysis results show that low-cost multilayer graphene can be produced by the electrochemical exfoliation method with the electrical parameters.

Supporting Institution

Niğde University Research Projects Unit

Project Number

FEB 2018/19.

Thanks

We thank Niğde Ömer Halisdemir University Individual Research Project Unit for supporting our FEB 2018/19 project.

References

  • [1] A. K. Geim,K. S. Novoselov, "The rise of graphene", Nature Mater, 6, p. 183-191, 2007
  • [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, p. 666-669, 2004
  • [3] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, A A, "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438, p. 197, 2005
  • [4] Y. Zhang, Y.-W. Tan, H. L. Stormer,P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature, 438, p. 201, 2005
  • [5] C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, p. 385-388, 2008
  • [6] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao,C. N. Lau, "Superior thermal conductivity of single-layer graphene", Nano Letters, 8, p. 902-907, 2008
  • [7] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Communications, 146, p. 351-355, 2008
  • [8] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials", Nature Materials, 10, p. 569, 2011
  • [9] V. B. Mohan, K.-t. Lau, D. Hui, D. Bhattacharyya, "Graphene-based materials and their composites: a review on production, applications and product limitations", Composites Part B: Engineering, 142, p. 200-220, 2018
  • [10] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang,K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids", ACS Nano, 3, p. 2367-2375, 2009
  • [11] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen,A. F. Morpurgo, "Bipolar supercurrent in graphene", Nature, 446, p. 56, 2007
  • [12] L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini,A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors", Nature Materials, 11, p. 865, 2012
  • [13] M. D. Mukherjee, C. Dhand, N. Dwivedi, B. P. Singh, G. Sumana, V. V. Agarwal, J. S. Tawale, B. D. Malhotra, "Facile synthesis of 2-dimensional transparent graphene flakes for nucleic acid detection", Sensors and Actuators B: Chemical, 210, p. 281-289, 2015
  • [14] S. J. Wang, Y. Geng, Q. Zheng,J.-K. Kim, "Fabrication of highly conducting and transparent graphene films", Carbon, 48, p. 1815-1823, 2010
  • [15] X. Song, Z. Shi, X. Tan, S. Zhang, G. Liu,K. Wu, "One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine", Sensors and Actuators B: Chemical, 197, p. 104-108, 2014
  • [16] S. Kim, H. S. Lee, J. M. Kim, S. W. Seo, J. H. Kim, C. W. Jang,S.-H. Choi, "Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes", Journal of Alloys and Compounds, 744, p. 404-411, 2018
  • [17] K. Parvez, R. Li, S. R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, "Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics", ACS Nano, 7, p. 3598-3606, 2013
  • [18] Z. Y. Xia, G. Giambastiani, C. Christodoulou, M. V. Nardi, N. Koch, E. Treossi, V. Bellani, S. Pezzini, F. Corticelli,V. Morandi, "Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes", ChemPlusChem, 79, p. 439-446, 2014
  • [19] Y. L. Zhong, Z. Tian, G. P. Simon, D. Li, "Scalable production of graphene via wet chemistry: progress and challenges", Materials Today, 18, p. 73-78, 2015
  • [20] Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. - M. Cheng, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition", Nature Materials, 10, p. 424, 2011
  • [21] R. Singh,C. C. Tripathi, "Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulphate", Materials Today: Proceedings, 5, p. 973-979, 2018
  • [22] J. Chen, B. Yao, C. Li, G. Shi, "An improved Hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, p. 225-229, 2013
  • [23] Z. Yang, S. Xu, L. Zhao, J. Zhang, Z. Wang, X. Chen, X. Cheng, F. Yu, X. Zhao, "A new direct growth method of graphene on Si-face of 6H-SiC by synergy of the inner and external carbon sources", Applied Surface Science, 436, p. 511-518, 2018
  • [24] A. T. Najafabadi,E. Gyenge, "High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)–acetonitrile electrolyte with low IL content", Carbon, 71, p. 58-69, 2014
  • [25] T. Güzel, "Investigation of the usability of nitric acid electrolyte in graphene production by electrochemical method", Fullerenes, Nanotubes and Carbon Nanostructures, 1-8, 2020
  • [26] R. I. Jibrael, M. K. Mohammed, "Production of graphene powder by electrochemical exfoliation of graphite electrodes immersed in aqueous solution", Optik, 127, p. 6384-6389, 2016
  • [27] S. Yang, S. Brüller, Z.-S. Wu, Z. Liu, K. Parvez, R. Dong, F. Richard, P. Samorì, X. Feng, K. Müllen, "Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene", Journal of the American Chemical Society, 137, p. 13927-13932, 2015
  • [28] M. Coroş, F. Pogăcean, M.-C. Roşu, C. Socaci, G. Borodi, L. Mageruşan, A. R. Biriş,S. Pruneanu, "Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods", RSC Advances, 6, p. 2651-2661, 2016
  • [29] A. Petrovski, A. T. Dimitrov, A. Grozdanov, P. Paunović, B. Andonović, G. Gentile, M. Avella,B. Ranguelov, "Study of Graphene Obtained by Electrolysis in Sulfuric Acid Electrolytes", SciFed Nanotech Research Letters, 2017
  • [30] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun,J. Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation", Carbon, 47, p. 3242-3246, 2009
  • [31] J. Munuera, J. Paredes, S. Villar-Rodil, A. Martínez-Alonso,J. Tascón, "A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil", Carbon, 115, p. 625-628, 2017
  • [32] Q. Zhou, Y. Lu, H. Xu, "High-yield production of high-quality graphene by novel electrochemical exfoliation at air-electrolyte interface", Materials Letters, 235, p. 153-156, 2019
  • [33] K. Chen,D. Xue, "From graphite-clay composites to graphene electrode materials: in-situ electrochemical oxidation and functionalization", Materials Research Bulletin, 96, p. 281-285, 2017
  • [34] M. Alanyalıoğlu, J. J. Segura, J. Oró-Solè,N. Casañ-Pastor, "The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes", Carbon, 50, p. 142-152, 2012
  • [35] K. Chen,D. Xue, "Preparation of colloidal graphene in quantity by electrochemical exfoliation", Journal of Colloid and Interface Science, 436, p. 41-46, 2014
  • [36] S. K. Sahoo, A. Mallik, "Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets", Nano, 10, p. 1550019, 2015
  • [37] I. Afanasov, O. Shornikova, D. Kirilenko, I. Vlasov, L. Zhang, J. Verbeeck, V. Avdeev,G. Van Tendeloo, "Graphite structural transformations during intercalation by HNO3 and exfoliation", Carbon, 48, p. 1862-1865, 2010
  • [38] K. Chen, D. Xue, S. Komarneni, "Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode", Journal of Colloid and Interface Science, 487, p. 156-161, 2017
  • [39] F. T. Johra, J.-W. Lee,W.-G. Jung, "Facile and safe graphene preparation on solution based platform", Journal of Industrial and Engineering Chemistry, 20, p. 2883-2887, 2014
  • [40] B. E. Warren, X-ray Diffraction. 1990: Courier Corporation.
  • [41] A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov,S. Roth, "Raman spectrum of graphene and graphene layers", Physical Review Letters, 97, p. 187401, 2006
  • [42] K. S. Rao, J. Senthilnathan, Y.-F. Liu,M. Yoshimura, "Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite", Scientific Reports, 4, p. 4237, 2014
  • [43] A. Radoń, P. Włodarczyk,D. Łukowiec, "Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite", Physica E: Low-dimensional Systems and Nanostructures, 99, p. 82-90, 2018
  • [44] M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio,R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy", Physical Chemistry Chemical Physics, 9, p. 1276-1290, 2007
  • [45] R. Singh,C. C. Tripathi, "Electrochemical exfoliation of graphite into graphene for flexible supercapacitor application", Materials Today: Proceedings, 5, p. 1125-1130, 2018
  • [46] P. Chamoli, M. K. Das, K. K. Kar, "Green synthesis of less defect density bilayer graphene", Graphene, 3, p. 56-60, 2015
  • [47] S.-H. Lee, S.-D. Seo, K.-S. Park, H.-W. Shim,D.-W. Kim, "Synthesis of graphene nanosheets by the electrolytic exfoliation of graphite and their direct assembly for lithium ion battery anodes", Materials Chemistry and Physics, 135, p. 309-316, 2012
  • [48] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, "Raman spectroscopy in graphene", Physics Reports, 473, p. 51-87, 2009
  • [49] C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, L.-J. Li, "High-quality thin graphene films from fast electrochemical exfoliation", ACS Nano, 5, p. 2332-2339, 2011
  • [50] M. J. Firdhouse, P. Lalitha, "Eco-friendly synthesis of graphene using the aqueous extract of Amaranthus dubius", Carbon:Science and Technology, 5, p. 253-259, 2013
  • [51] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker,S. Seal, "Graphene based materials: past, present and future", Progress in Materials Science, 56, p. 1178-1271, 2011
  • [52] V. Chabot, B. Kim, B. Sloper, C. Tzoganakis,A. Yu, "High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication", Scientific Reports, 3, p. 1378, 2013
  • [53] H. S. Wahab, S. H. Ali,A. A. Hussein, "Synthesis and characterization of graphene by Raman spectroscopy", Journal of Materials Sciences and Applications, 1, p. 130-135, 2015
  • [54] R. Navik, Y. Gai, W. Wang,Y. Zhao, "Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol", Ultrasonics Sonochemistry, 48, p. 96-102, 2018
  • [55] A. Ambrosi, M. Pumera, "Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications", Chemistry–A European Journal, 22, p. 153-159, 2016
  • [56] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa,P. Eklund, "Raman scattering from high-frequency phonons in supported n-graphene layer films", Nano Letters, 6, p. 2667-2673, 2006
  • [57] H. D. Le, T. T. T. Ngo, D. Q. Le, X. N. Nguyen,N. M. Phan, "Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method", Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, p. 035012, 2013
  • [58] A. Hamra, H. Lim, W. Chee,N. Huang, "Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor", Applied Surface Science, 360, p. 213-223, 2016
  • [59] Y.-H. Son, W.-C. Jung, J.-I. Jeong, N.-G. Park, I.-S. Kim,I.-H. Bae, "FTIR characteristics of hydrogenated amorphous carbon films prepared by Ecr-Pecvd", Journal-Korean Physical Society, 39, p. 713-717, 2001
  • [60] E. Vaghri, Z. Khalaj,M. Ghoranneviss, "Preparation and characterization of diamond-like carbon films on various substrates by PECVD system", Studia Univ Babes-Bolyai Chemia, 57, p. 143-150, 2012
  • [61] M. Hayyan, A. Abo-Hamad, M. A. AlSaadi,M. A. Hashim, "Functionalization of graphene using deep eutectic solvents", Nanoscale Research Letters, 10, p. 324, 2015
  • [62] A. Mir, A. Shukla, "Bilayer-rich graphene suspension from electrochemical exfoliation of graphite", Materials & Design, 156, p. 62-70, 2018
  • [63] O. Sadak, A. K. Sundramoorthy,S. Gunasekaran, "Facile and green synthesis of highly conductive graphene paper", Carbon, 138, p. 108-117, 2018
  • [64] Z. M. Marković, B. M. Babić, M. Dramićanin, I. H. Antunović, V. B. Pavlović, D. Peruško,B. T. Marković, "Preparation of highly conductive carbon cryogel based on pristine graphene", Synthetic Metals, 162, p. 743-747, 2012
  • [65] F. Tavakoli, M. Salavati-Niasari,F. Mohandes, "Green synthesis and characterization of graphene nanosheets", Materials Research Bulletin, 63, p. 51-57, 2015
Year 2024, Volume: 28 Issue: 2, 283 - 293, 30.04.2024
https://doi.org/10.16984/saufenbilder.1271095

Abstract

Project Number

FEB 2018/19.

References

  • [1] A. K. Geim,K. S. Novoselov, "The rise of graphene", Nature Mater, 6, p. 183-191, 2007
  • [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, p. 666-669, 2004
  • [3] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, A A, "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438, p. 197, 2005
  • [4] Y. Zhang, Y.-W. Tan, H. L. Stormer,P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature, 438, p. 201, 2005
  • [5] C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, p. 385-388, 2008
  • [6] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao,C. N. Lau, "Superior thermal conductivity of single-layer graphene", Nano Letters, 8, p. 902-907, 2008
  • [7] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Communications, 146, p. 351-355, 2008
  • [8] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials", Nature Materials, 10, p. 569, 2011
  • [9] V. B. Mohan, K.-t. Lau, D. Hui, D. Bhattacharyya, "Graphene-based materials and their composites: a review on production, applications and product limitations", Composites Part B: Engineering, 142, p. 200-220, 2018
  • [10] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang,K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids", ACS Nano, 3, p. 2367-2375, 2009
  • [11] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen,A. F. Morpurgo, "Bipolar supercurrent in graphene", Nature, 446, p. 56, 2007
  • [12] L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini,A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors", Nature Materials, 11, p. 865, 2012
  • [13] M. D. Mukherjee, C. Dhand, N. Dwivedi, B. P. Singh, G. Sumana, V. V. Agarwal, J. S. Tawale, B. D. Malhotra, "Facile synthesis of 2-dimensional transparent graphene flakes for nucleic acid detection", Sensors and Actuators B: Chemical, 210, p. 281-289, 2015
  • [14] S. J. Wang, Y. Geng, Q. Zheng,J.-K. Kim, "Fabrication of highly conducting and transparent graphene films", Carbon, 48, p. 1815-1823, 2010
  • [15] X. Song, Z. Shi, X. Tan, S. Zhang, G. Liu,K. Wu, "One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine", Sensors and Actuators B: Chemical, 197, p. 104-108, 2014
  • [16] S. Kim, H. S. Lee, J. M. Kim, S. W. Seo, J. H. Kim, C. W. Jang,S.-H. Choi, "Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes", Journal of Alloys and Compounds, 744, p. 404-411, 2018
  • [17] K. Parvez, R. Li, S. R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, "Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics", ACS Nano, 7, p. 3598-3606, 2013
  • [18] Z. Y. Xia, G. Giambastiani, C. Christodoulou, M. V. Nardi, N. Koch, E. Treossi, V. Bellani, S. Pezzini, F. Corticelli,V. Morandi, "Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes", ChemPlusChem, 79, p. 439-446, 2014
  • [19] Y. L. Zhong, Z. Tian, G. P. Simon, D. Li, "Scalable production of graphene via wet chemistry: progress and challenges", Materials Today, 18, p. 73-78, 2015
  • [20] Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. - M. Cheng, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition", Nature Materials, 10, p. 424, 2011
  • [21] R. Singh,C. C. Tripathi, "Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulphate", Materials Today: Proceedings, 5, p. 973-979, 2018
  • [22] J. Chen, B. Yao, C. Li, G. Shi, "An improved Hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, p. 225-229, 2013
  • [23] Z. Yang, S. Xu, L. Zhao, J. Zhang, Z. Wang, X. Chen, X. Cheng, F. Yu, X. Zhao, "A new direct growth method of graphene on Si-face of 6H-SiC by synergy of the inner and external carbon sources", Applied Surface Science, 436, p. 511-518, 2018
  • [24] A. T. Najafabadi,E. Gyenge, "High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)–acetonitrile electrolyte with low IL content", Carbon, 71, p. 58-69, 2014
  • [25] T. Güzel, "Investigation of the usability of nitric acid electrolyte in graphene production by electrochemical method", Fullerenes, Nanotubes and Carbon Nanostructures, 1-8, 2020
  • [26] R. I. Jibrael, M. K. Mohammed, "Production of graphene powder by electrochemical exfoliation of graphite electrodes immersed in aqueous solution", Optik, 127, p. 6384-6389, 2016
  • [27] S. Yang, S. Brüller, Z.-S. Wu, Z. Liu, K. Parvez, R. Dong, F. Richard, P. Samorì, X. Feng, K. Müllen, "Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene", Journal of the American Chemical Society, 137, p. 13927-13932, 2015
  • [28] M. Coroş, F. Pogăcean, M.-C. Roşu, C. Socaci, G. Borodi, L. Mageruşan, A. R. Biriş,S. Pruneanu, "Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods", RSC Advances, 6, p. 2651-2661, 2016
  • [29] A. Petrovski, A. T. Dimitrov, A. Grozdanov, P. Paunović, B. Andonović, G. Gentile, M. Avella,B. Ranguelov, "Study of Graphene Obtained by Electrolysis in Sulfuric Acid Electrolytes", SciFed Nanotech Research Letters, 2017
  • [30] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun,J. Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation", Carbon, 47, p. 3242-3246, 2009
  • [31] J. Munuera, J. Paredes, S. Villar-Rodil, A. Martínez-Alonso,J. Tascón, "A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil", Carbon, 115, p. 625-628, 2017
  • [32] Q. Zhou, Y. Lu, H. Xu, "High-yield production of high-quality graphene by novel electrochemical exfoliation at air-electrolyte interface", Materials Letters, 235, p. 153-156, 2019
  • [33] K. Chen,D. Xue, "From graphite-clay composites to graphene electrode materials: in-situ electrochemical oxidation and functionalization", Materials Research Bulletin, 96, p. 281-285, 2017
  • [34] M. Alanyalıoğlu, J. J. Segura, J. Oró-Solè,N. Casañ-Pastor, "The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes", Carbon, 50, p. 142-152, 2012
  • [35] K. Chen,D. Xue, "Preparation of colloidal graphene in quantity by electrochemical exfoliation", Journal of Colloid and Interface Science, 436, p. 41-46, 2014
  • [36] S. K. Sahoo, A. Mallik, "Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets", Nano, 10, p. 1550019, 2015
  • [37] I. Afanasov, O. Shornikova, D. Kirilenko, I. Vlasov, L. Zhang, J. Verbeeck, V. Avdeev,G. Van Tendeloo, "Graphite structural transformations during intercalation by HNO3 and exfoliation", Carbon, 48, p. 1862-1865, 2010
  • [38] K. Chen, D. Xue, S. Komarneni, "Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode", Journal of Colloid and Interface Science, 487, p. 156-161, 2017
  • [39] F. T. Johra, J.-W. Lee,W.-G. Jung, "Facile and safe graphene preparation on solution based platform", Journal of Industrial and Engineering Chemistry, 20, p. 2883-2887, 2014
  • [40] B. E. Warren, X-ray Diffraction. 1990: Courier Corporation.
  • [41] A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov,S. Roth, "Raman spectrum of graphene and graphene layers", Physical Review Letters, 97, p. 187401, 2006
  • [42] K. S. Rao, J. Senthilnathan, Y.-F. Liu,M. Yoshimura, "Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite", Scientific Reports, 4, p. 4237, 2014
  • [43] A. Radoń, P. Włodarczyk,D. Łukowiec, "Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite", Physica E: Low-dimensional Systems and Nanostructures, 99, p. 82-90, 2018
  • [44] M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio,R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy", Physical Chemistry Chemical Physics, 9, p. 1276-1290, 2007
  • [45] R. Singh,C. C. Tripathi, "Electrochemical exfoliation of graphite into graphene for flexible supercapacitor application", Materials Today: Proceedings, 5, p. 1125-1130, 2018
  • [46] P. Chamoli, M. K. Das, K. K. Kar, "Green synthesis of less defect density bilayer graphene", Graphene, 3, p. 56-60, 2015
  • [47] S.-H. Lee, S.-D. Seo, K.-S. Park, H.-W. Shim,D.-W. Kim, "Synthesis of graphene nanosheets by the electrolytic exfoliation of graphite and their direct assembly for lithium ion battery anodes", Materials Chemistry and Physics, 135, p. 309-316, 2012
  • [48] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, "Raman spectroscopy in graphene", Physics Reports, 473, p. 51-87, 2009
  • [49] C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, L.-J. Li, "High-quality thin graphene films from fast electrochemical exfoliation", ACS Nano, 5, p. 2332-2339, 2011
  • [50] M. J. Firdhouse, P. Lalitha, "Eco-friendly synthesis of graphene using the aqueous extract of Amaranthus dubius", Carbon:Science and Technology, 5, p. 253-259, 2013
  • [51] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker,S. Seal, "Graphene based materials: past, present and future", Progress in Materials Science, 56, p. 1178-1271, 2011
  • [52] V. Chabot, B. Kim, B. Sloper, C. Tzoganakis,A. Yu, "High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication", Scientific Reports, 3, p. 1378, 2013
  • [53] H. S. Wahab, S. H. Ali,A. A. Hussein, "Synthesis and characterization of graphene by Raman spectroscopy", Journal of Materials Sciences and Applications, 1, p. 130-135, 2015
  • [54] R. Navik, Y. Gai, W. Wang,Y. Zhao, "Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol", Ultrasonics Sonochemistry, 48, p. 96-102, 2018
  • [55] A. Ambrosi, M. Pumera, "Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications", Chemistry–A European Journal, 22, p. 153-159, 2016
  • [56] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa,P. Eklund, "Raman scattering from high-frequency phonons in supported n-graphene layer films", Nano Letters, 6, p. 2667-2673, 2006
  • [57] H. D. Le, T. T. T. Ngo, D. Q. Le, X. N. Nguyen,N. M. Phan, "Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method", Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, p. 035012, 2013
  • [58] A. Hamra, H. Lim, W. Chee,N. Huang, "Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor", Applied Surface Science, 360, p. 213-223, 2016
  • [59] Y.-H. Son, W.-C. Jung, J.-I. Jeong, N.-G. Park, I.-S. Kim,I.-H. Bae, "FTIR characteristics of hydrogenated amorphous carbon films prepared by Ecr-Pecvd", Journal-Korean Physical Society, 39, p. 713-717, 2001
  • [60] E. Vaghri, Z. Khalaj,M. Ghoranneviss, "Preparation and characterization of diamond-like carbon films on various substrates by PECVD system", Studia Univ Babes-Bolyai Chemia, 57, p. 143-150, 2012
  • [61] M. Hayyan, A. Abo-Hamad, M. A. AlSaadi,M. A. Hashim, "Functionalization of graphene using deep eutectic solvents", Nanoscale Research Letters, 10, p. 324, 2015
  • [62] A. Mir, A. Shukla, "Bilayer-rich graphene suspension from electrochemical exfoliation of graphite", Materials & Design, 156, p. 62-70, 2018
  • [63] O. Sadak, A. K. Sundramoorthy,S. Gunasekaran, "Facile and green synthesis of highly conductive graphene paper", Carbon, 138, p. 108-117, 2018
  • [64] Z. M. Marković, B. M. Babić, M. Dramićanin, I. H. Antunović, V. B. Pavlović, D. Peruško,B. T. Marković, "Preparation of highly conductive carbon cryogel based on pristine graphene", Synthetic Metals, 162, p. 743-747, 2012
  • [65] F. Tavakoli, M. Salavati-Niasari,F. Mohandes, "Green synthesis and characterization of graphene nanosheets", Materials Research Bulletin, 63, p. 51-57, 2015
There are 65 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Tamer Güzel 0000-0003-3870-7223

Yasemin İşlek 0000-0002-1823-6746

Oğuzhan Yıldız 0000-0003-0353-8650

Project Number FEB 2018/19.
Early Pub Date April 22, 2024
Publication Date April 30, 2024
Submission Date March 26, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA Güzel, T., İşlek, Y., & Yıldız, O. (2024). Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method. Sakarya University Journal of Science, 28(2), 283-293. https://doi.org/10.16984/saufenbilder.1271095
AMA Güzel T, İşlek Y, Yıldız O. Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method. SAUJS. April 2024;28(2):283-293. doi:10.16984/saufenbilder.1271095
Chicago Güzel, Tamer, Yasemin İşlek, and Oğuzhan Yıldız. “Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method”. Sakarya University Journal of Science 28, no. 2 (April 2024): 283-93. https://doi.org/10.16984/saufenbilder.1271095.
EndNote Güzel T, İşlek Y, Yıldız O (April 1, 2024) Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method. Sakarya University Journal of Science 28 2 283–293.
IEEE T. Güzel, Y. İşlek, and O. Yıldız, “Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method”, SAUJS, vol. 28, no. 2, pp. 283–293, 2024, doi: 10.16984/saufenbilder.1271095.
ISNAD Güzel, Tamer et al. “Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method”. Sakarya University Journal of Science 28/2 (April 2024), 283-293. https://doi.org/10.16984/saufenbilder.1271095.
JAMA Güzel T, İşlek Y, Yıldız O. Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method. SAUJS. 2024;28:283–293.
MLA Güzel, Tamer et al. “Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 283-9, doi:10.16984/saufenbilder.1271095.
Vancouver Güzel T, İşlek Y, Yıldız O. Morphological and Thermal Characterization of Low-Cost Graphene Produced by Electrochemical Exfoliation Method. SAUJS. 2024;28(2):283-9.