The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats
Year 2019,
Volume: 4 Issue: 2, 60 - 75, 28.10.2019
Mustafa Can Güler
,
Tuncer Nacar
,
Ersen Eraslan
Ayhan Tanyeli
,
Elif Polat
Selim Çomaklı
Abstract
Purpose:Hypothalamic pituitary adrenal (HPA) axis has many missions such as responses to stress and inflammatory factors. HPA axis is the primer stress response system. Adropin is a peptid structured hormone coded by energy homeostasis related gene. In this study biochemical, histopathologic and immunohistochemical effects of adropin hormone on HPA axis were examined.
Material and Method:Thirty two (32) Wistar Albinomale rats were used in the study. The rats were separated into 4 equal groups (n=8). The control group did not receive any applications; and the sham group was given adropin-dissolvent. Adropin was administered as intraperitoneal to the treatment groups at doses of 4 μg/kg and 40 μg/kg.The study lasted 10 days. On the 11thday, the animals were sacrified, and relevant tissue samples were collected.
Findings:While cortisole, adrenaline, noradrenaline and serotonin levels decreased, contrary dopamin levels increased. There were no important changes on melatonin levels. As a consequence of immunohistochemical staining, CRH has shown increase in adropin groups compared to other groups.
Supporting Institution
Department of Scientific Research Projects of Atatürk University
References
- 1. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England journal of medicine. 1995;332(20):1351-62.
- 2. Spencer RL, Deak T. A users guide to HPA axis research. Physiology & behavior. 2017;178:43-65.
- 3. Veo K, Reinick C, Liang L, Moser E, Angleson JK, Dores RM. Observations on the ligand selectivity of the melanocortin 2 receptor. General and comparative endocrinology. 2011;172(1):3-9.
- 4. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine reviews. 2011;32(1):81-151.
- 5. Womble JR, Larson DF, Copeland JG, Brown BR, Haddox MK, Haddock Russell D. Adrenal medulla denervation prevents stress-induced epinephrine plasma elevation and cardiac hypertrophy. Life Sciences. 1980;27(24):2417-20.
- 6. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM, et al. Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress. Cellular and molecular neurobiology. 2012;32(5):737-48.
- 7. Saphier D. Electrophysiology and neuropharmacology of noradrenergic projections to rat PVN magnocellular neurons. The American journal of physiology. 1993;264(5 Pt 2):R891-902.
- 8. Belda X, Armario A. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology. 2009;206(3):355-65.
- 9. Spencer SJ, Ebner K, Day TA. Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic-pituitary-adrenal axis responses to different stressors. The European journal of neuroscience. 2004;20(4):1008-16.
- 10. Fuller RW. Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology. 1981;32(2):118-27.
- 11. Campino C, Valenzuela FJ, Torres-Farfan C, Reynolds HE, Abarzua-Catalan L, Arteaga E, et al. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2011;43(5):337-42.
- 12. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell metabolism. 2008;8(6):468-81.
- 13. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(11 Suppl):S185-92.
- 14. Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M, et al. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Molecular and cellular biochemistry. 2013;380(1-2):73-81.
- 15. Shahjouei S, Ansari S, Pourmotabbed T, Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature. Frontiers in molecular biosciences. 2016;3:25.
- 16. Ganesh Kumar K, Zhang J, Gao S, Rossi J, McGuinness OP, Halem HH, et al. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring, Md). 2012;20(7):1394-402.
- 17. Li L, Xie W, Zheng XL, Yin WD, Tang CK. A novel peptide adropin in cardiovascular diseases. Clinica chimica acta; international journal of clinical chemistry. 2016;453:107-13.
- 18. Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular metabolism. 2015;4(4):310-24.
- 19. Garcia-Leon MA, Perez-Marmol JM, Gonzalez-Perez R, Garcia-Rios MDC, Peralta-Ramirez MI. Relationship between resilience and stress: Perceived stress, stressful life events, HPA axis response during a stressful task and hair cortisol. Physiology & behavior. 2019;202:87-93.
- 20. Gunnar M, Quevedo K. The neurobiology of stress and development. Annual review of psychology. 2007;58:145-73.
- 21. Herane-Vives A, Fischer S, de Angel V, Wise T, Cheung E, Chua KC, et al. Elevated fingernail cortisol levels in major depressive episodes. Psychoneuroendocrinology. 2018;88:17-23.
- 22. Barugh AJ, Gray P, Shenkin SD, MacLullich AM, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: a systematic review. Journal of neurology. 2014;261(3):533-45.
- 23. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews Neuroscience. 2009;10(6):397-409.
- 24. Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress (Amsterdam, Netherlands). 2016;19(4):419-28.
- 25. Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(3):1059-64.
- 26. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004;24(11):2825-31.
- 27. Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A. 2011;108(45):18459-64.
- 28. Cleare AJ, Forsling M, Bond AJ. Neuroendocrine and hypothermic effects of 5-HT1A receptor stimulation with ipsapirone in healthy men: a placebo-controlled study. International clinical psychopharmacology. 1998;13(1):23-32.
- 29. Koenig JI, Meltzer HY, Gudelsky GA. 5-Hydroxytryptamine1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacology, biochemistry, and behavior. 1988;29(4):711-5.
- 30. Lorens SA, Van de Kar LD. Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology. 1987;45(4):305-10.
- 31. Yatham LN, Shiah IS, Lam RW, Tam EM, Zis AP. Hypothermic, ACTH, and cortisol responses to ipsapirone in patients with mania and healthy controls. Journal of affective disorders. 1999;54(3):295-301.
- 32. Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D'Souza DN, Tetzlaff J, et al. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(21):9635-42.
- 33. Torres-Farfan C, Richter HG, Rojas-Garcia P, Vergara M, Forcelledo ML, Valladares LE, et al. mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. The Journal of clinical endocrinology and metabolism. 2003;88(1):450-8.
- 34. Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, et al. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. The Journal of physiology. 2008;586(16):4017-27.
- 35. Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, et al. Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology. 2008;149(3):995-1003.
- 36. Knoop A, Thomas A, Bidlingmaier M, Delahaut P, Schänzer W, Thevis M. Probing for corticotropin-releasing hormone (CRH) in human blood for doping control purposes using immunoaffinity purification and LC-HRMS/MS. Analytical Methods. 2017;9(29):4304-10.
- 37. Endsin MJ, Michalec O, Manzon LA, Lovejoy DA, Manzon RG. CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. General and comparative endocrinology. 2017;240:162-73.
- 38. Yadawa AK, Richa R, Chaturvedi CM. Herbicide Paraquat provokes the stress responses of HPA axis of laboratory mouse, Mus musculus. Pesticide Biochemistry and Physiology. 2019;153:106-15.
Year 2019,
Volume: 4 Issue: 2, 60 - 75, 28.10.2019
Mustafa Can Güler
,
Tuncer Nacar
,
Ersen Eraslan
Ayhan Tanyeli
,
Elif Polat
Selim Çomaklı
References
- 1. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England journal of medicine. 1995;332(20):1351-62.
- 2. Spencer RL, Deak T. A users guide to HPA axis research. Physiology & behavior. 2017;178:43-65.
- 3. Veo K, Reinick C, Liang L, Moser E, Angleson JK, Dores RM. Observations on the ligand selectivity of the melanocortin 2 receptor. General and comparative endocrinology. 2011;172(1):3-9.
- 4. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine reviews. 2011;32(1):81-151.
- 5. Womble JR, Larson DF, Copeland JG, Brown BR, Haddox MK, Haddock Russell D. Adrenal medulla denervation prevents stress-induced epinephrine plasma elevation and cardiac hypertrophy. Life Sciences. 1980;27(24):2417-20.
- 6. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM, et al. Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress. Cellular and molecular neurobiology. 2012;32(5):737-48.
- 7. Saphier D. Electrophysiology and neuropharmacology of noradrenergic projections to rat PVN magnocellular neurons. The American journal of physiology. 1993;264(5 Pt 2):R891-902.
- 8. Belda X, Armario A. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology. 2009;206(3):355-65.
- 9. Spencer SJ, Ebner K, Day TA. Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic-pituitary-adrenal axis responses to different stressors. The European journal of neuroscience. 2004;20(4):1008-16.
- 10. Fuller RW. Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology. 1981;32(2):118-27.
- 11. Campino C, Valenzuela FJ, Torres-Farfan C, Reynolds HE, Abarzua-Catalan L, Arteaga E, et al. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2011;43(5):337-42.
- 12. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell metabolism. 2008;8(6):468-81.
- 13. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(11 Suppl):S185-92.
- 14. Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M, et al. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Molecular and cellular biochemistry. 2013;380(1-2):73-81.
- 15. Shahjouei S, Ansari S, Pourmotabbed T, Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature. Frontiers in molecular biosciences. 2016;3:25.
- 16. Ganesh Kumar K, Zhang J, Gao S, Rossi J, McGuinness OP, Halem HH, et al. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring, Md). 2012;20(7):1394-402.
- 17. Li L, Xie W, Zheng XL, Yin WD, Tang CK. A novel peptide adropin in cardiovascular diseases. Clinica chimica acta; international journal of clinical chemistry. 2016;453:107-13.
- 18. Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular metabolism. 2015;4(4):310-24.
- 19. Garcia-Leon MA, Perez-Marmol JM, Gonzalez-Perez R, Garcia-Rios MDC, Peralta-Ramirez MI. Relationship between resilience and stress: Perceived stress, stressful life events, HPA axis response during a stressful task and hair cortisol. Physiology & behavior. 2019;202:87-93.
- 20. Gunnar M, Quevedo K. The neurobiology of stress and development. Annual review of psychology. 2007;58:145-73.
- 21. Herane-Vives A, Fischer S, de Angel V, Wise T, Cheung E, Chua KC, et al. Elevated fingernail cortisol levels in major depressive episodes. Psychoneuroendocrinology. 2018;88:17-23.
- 22. Barugh AJ, Gray P, Shenkin SD, MacLullich AM, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: a systematic review. Journal of neurology. 2014;261(3):533-45.
- 23. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews Neuroscience. 2009;10(6):397-409.
- 24. Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress (Amsterdam, Netherlands). 2016;19(4):419-28.
- 25. Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(3):1059-64.
- 26. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004;24(11):2825-31.
- 27. Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A. 2011;108(45):18459-64.
- 28. Cleare AJ, Forsling M, Bond AJ. Neuroendocrine and hypothermic effects of 5-HT1A receptor stimulation with ipsapirone in healthy men: a placebo-controlled study. International clinical psychopharmacology. 1998;13(1):23-32.
- 29. Koenig JI, Meltzer HY, Gudelsky GA. 5-Hydroxytryptamine1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacology, biochemistry, and behavior. 1988;29(4):711-5.
- 30. Lorens SA, Van de Kar LD. Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology. 1987;45(4):305-10.
- 31. Yatham LN, Shiah IS, Lam RW, Tam EM, Zis AP. Hypothermic, ACTH, and cortisol responses to ipsapirone in patients with mania and healthy controls. Journal of affective disorders. 1999;54(3):295-301.
- 32. Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D'Souza DN, Tetzlaff J, et al. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(21):9635-42.
- 33. Torres-Farfan C, Richter HG, Rojas-Garcia P, Vergara M, Forcelledo ML, Valladares LE, et al. mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. The Journal of clinical endocrinology and metabolism. 2003;88(1):450-8.
- 34. Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, et al. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. The Journal of physiology. 2008;586(16):4017-27.
- 35. Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, et al. Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology. 2008;149(3):995-1003.
- 36. Knoop A, Thomas A, Bidlingmaier M, Delahaut P, Schänzer W, Thevis M. Probing for corticotropin-releasing hormone (CRH) in human blood for doping control purposes using immunoaffinity purification and LC-HRMS/MS. Analytical Methods. 2017;9(29):4304-10.
- 37. Endsin MJ, Michalec O, Manzon LA, Lovejoy DA, Manzon RG. CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. General and comparative endocrinology. 2017;240:162-73.
- 38. Yadawa AK, Richa R, Chaturvedi CM. Herbicide Paraquat provokes the stress responses of HPA axis of laboratory mouse, Mus musculus. Pesticide Biochemistry and Physiology. 2019;153:106-15.