Research Article
BibTex RIS Cite

The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats

Year 2019, Volume: 4 Issue: 2, 60 - 75, 28.10.2019

Abstract

Purpose:Hypothalamic pituitary adrenal (HPA) axis has many missions such as responses to stress and inflammatory factors. HPA axis is the primer stress response system. Adropin is a peptid structured hormone coded by energy homeostasis related gene. In this study biochemical, histopathologic and immunohistochemical effects of adropin hormone on HPA axis were examined.

Material and Method:Thirty two (32) Wistar Albinomale rats were used in the study. The rats were separated into 4 equal groups (n=8). The control group did not receive any applications; and the sham group was given adropin-dissolvent. Adropin was administered as intraperitoneal to the treatment groups at doses of 4 μg/kg and 40 μg/kg.The study lasted 10 days. On the 11thday, the animals were sacrified, and relevant tissue samples were collected.

Findings:While cortisole, adrenaline, noradrenaline and serotonin levels decreased, contrary dopamin levels increased. There were no important changes on melatonin levels. As a consequence of immunohistochemical staining, CRH has shown increase in adropin groups compared to other groups.

Supporting Institution

Department of Scientific Research Projects of Atatürk University

Project Number

2016/64

References

  • 1. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England journal of medicine. 1995;332(20):1351-62.
  • 2. Spencer RL, Deak T. A users guide to HPA axis research. Physiology & behavior. 2017;178:43-65.
  • 3. Veo K, Reinick C, Liang L, Moser E, Angleson JK, Dores RM. Observations on the ligand selectivity of the melanocortin 2 receptor. General and comparative endocrinology. 2011;172(1):3-9.
  • 4. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine reviews. 2011;32(1):81-151.
  • 5. Womble JR, Larson DF, Copeland JG, Brown BR, Haddox MK, Haddock Russell D. Adrenal medulla denervation prevents stress-induced epinephrine plasma elevation and cardiac hypertrophy. Life Sciences. 1980;27(24):2417-20.
  • 6. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM, et al. Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress. Cellular and molecular neurobiology. 2012;32(5):737-48.
  • 7. Saphier D. Electrophysiology and neuropharmacology of noradrenergic projections to rat PVN magnocellular neurons. The American journal of physiology. 1993;264(5 Pt 2):R891-902.
  • 8. Belda X, Armario A. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology. 2009;206(3):355-65.
  • 9. Spencer SJ, Ebner K, Day TA. Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic-pituitary-adrenal axis responses to different stressors. The European journal of neuroscience. 2004;20(4):1008-16.
  • 10. Fuller RW. Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology. 1981;32(2):118-27.
  • 11. Campino C, Valenzuela FJ, Torres-Farfan C, Reynolds HE, Abarzua-Catalan L, Arteaga E, et al. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2011;43(5):337-42.
  • 12. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell metabolism. 2008;8(6):468-81.
  • 13. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(11 Suppl):S185-92.
  • 14. Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M, et al. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Molecular and cellular biochemistry. 2013;380(1-2):73-81.
  • 15. Shahjouei S, Ansari S, Pourmotabbed T, Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature. Frontiers in molecular biosciences. 2016;3:25.
  • 16. Ganesh Kumar K, Zhang J, Gao S, Rossi J, McGuinness OP, Halem HH, et al. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring, Md). 2012;20(7):1394-402.
  • 17. Li L, Xie W, Zheng XL, Yin WD, Tang CK. A novel peptide adropin in cardiovascular diseases. Clinica chimica acta; international journal of clinical chemistry. 2016;453:107-13.
  • 18. Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular metabolism. 2015;4(4):310-24.
  • 19. Garcia-Leon MA, Perez-Marmol JM, Gonzalez-Perez R, Garcia-Rios MDC, Peralta-Ramirez MI. Relationship between resilience and stress: Perceived stress, stressful life events, HPA axis response during a stressful task and hair cortisol. Physiology & behavior. 2019;202:87-93.
  • 20. Gunnar M, Quevedo K. The neurobiology of stress and development. Annual review of psychology. 2007;58:145-73.
  • 21. Herane-Vives A, Fischer S, de Angel V, Wise T, Cheung E, Chua KC, et al. Elevated fingernail cortisol levels in major depressive episodes. Psychoneuroendocrinology. 2018;88:17-23.
  • 22. Barugh AJ, Gray P, Shenkin SD, MacLullich AM, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: a systematic review. Journal of neurology. 2014;261(3):533-45.
  • 23. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews Neuroscience. 2009;10(6):397-409.
  • 24. Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress (Amsterdam, Netherlands). 2016;19(4):419-28.
  • 25. Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(3):1059-64.
  • 26. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004;24(11):2825-31.
  • 27. Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A. 2011;108(45):18459-64.
  • 28. Cleare AJ, Forsling M, Bond AJ. Neuroendocrine and hypothermic effects of 5-HT1A receptor stimulation with ipsapirone in healthy men: a placebo-controlled study. International clinical psychopharmacology. 1998;13(1):23-32.
  • 29. Koenig JI, Meltzer HY, Gudelsky GA. 5-Hydroxytryptamine1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacology, biochemistry, and behavior. 1988;29(4):711-5.
  • 30. Lorens SA, Van de Kar LD. Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology. 1987;45(4):305-10.
  • 31. Yatham LN, Shiah IS, Lam RW, Tam EM, Zis AP. Hypothermic, ACTH, and cortisol responses to ipsapirone in patients with mania and healthy controls. Journal of affective disorders. 1999;54(3):295-301.
  • 32. Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D'Souza DN, Tetzlaff J, et al. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(21):9635-42.
  • 33. Torres-Farfan C, Richter HG, Rojas-Garcia P, Vergara M, Forcelledo ML, Valladares LE, et al. mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. The Journal of clinical endocrinology and metabolism. 2003;88(1):450-8.
  • 34. Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, et al. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. The Journal of physiology. 2008;586(16):4017-27.
  • 35. Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, et al. Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology. 2008;149(3):995-1003.
  • 36. Knoop A, Thomas A, Bidlingmaier M, Delahaut P, Schänzer W, Thevis M. Probing for corticotropin-releasing hormone (CRH) in human blood for doping control purposes using immunoaffinity purification and LC-HRMS/MS. Analytical Methods. 2017;9(29):4304-10.
  • 37. Endsin MJ, Michalec O, Manzon LA, Lovejoy DA, Manzon RG. CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. General and comparative endocrinology. 2017;240:162-73.
  • 38. Yadawa AK, Richa R, Chaturvedi CM. Herbicide Paraquat provokes the stress responses of HPA axis of laboratory mouse, Mus musculus. Pesticide Biochemistry and Physiology. 2019;153:106-15.
Year 2019, Volume: 4 Issue: 2, 60 - 75, 28.10.2019

Abstract

Project Number

2016/64

References

  • 1. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England journal of medicine. 1995;332(20):1351-62.
  • 2. Spencer RL, Deak T. A users guide to HPA axis research. Physiology & behavior. 2017;178:43-65.
  • 3. Veo K, Reinick C, Liang L, Moser E, Angleson JK, Dores RM. Observations on the ligand selectivity of the melanocortin 2 receptor. General and comparative endocrinology. 2011;172(1):3-9.
  • 4. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine reviews. 2011;32(1):81-151.
  • 5. Womble JR, Larson DF, Copeland JG, Brown BR, Haddox MK, Haddock Russell D. Adrenal medulla denervation prevents stress-induced epinephrine plasma elevation and cardiac hypertrophy. Life Sciences. 1980;27(24):2417-20.
  • 6. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM, et al. Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress. Cellular and molecular neurobiology. 2012;32(5):737-48.
  • 7. Saphier D. Electrophysiology and neuropharmacology of noradrenergic projections to rat PVN magnocellular neurons. The American journal of physiology. 1993;264(5 Pt 2):R891-902.
  • 8. Belda X, Armario A. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology. 2009;206(3):355-65.
  • 9. Spencer SJ, Ebner K, Day TA. Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic-pituitary-adrenal axis responses to different stressors. The European journal of neuroscience. 2004;20(4):1008-16.
  • 10. Fuller RW. Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology. 1981;32(2):118-27.
  • 11. Campino C, Valenzuela FJ, Torres-Farfan C, Reynolds HE, Abarzua-Catalan L, Arteaga E, et al. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2011;43(5):337-42.
  • 12. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell metabolism. 2008;8(6):468-81.
  • 13. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(11 Suppl):S185-92.
  • 14. Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M, et al. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Molecular and cellular biochemistry. 2013;380(1-2):73-81.
  • 15. Shahjouei S, Ansari S, Pourmotabbed T, Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature. Frontiers in molecular biosciences. 2016;3:25.
  • 16. Ganesh Kumar K, Zhang J, Gao S, Rossi J, McGuinness OP, Halem HH, et al. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring, Md). 2012;20(7):1394-402.
  • 17. Li L, Xie W, Zheng XL, Yin WD, Tang CK. A novel peptide adropin in cardiovascular diseases. Clinica chimica acta; international journal of clinical chemistry. 2016;453:107-13.
  • 18. Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular metabolism. 2015;4(4):310-24.
  • 19. Garcia-Leon MA, Perez-Marmol JM, Gonzalez-Perez R, Garcia-Rios MDC, Peralta-Ramirez MI. Relationship between resilience and stress: Perceived stress, stressful life events, HPA axis response during a stressful task and hair cortisol. Physiology & behavior. 2019;202:87-93.
  • 20. Gunnar M, Quevedo K. The neurobiology of stress and development. Annual review of psychology. 2007;58:145-73.
  • 21. Herane-Vives A, Fischer S, de Angel V, Wise T, Cheung E, Chua KC, et al. Elevated fingernail cortisol levels in major depressive episodes. Psychoneuroendocrinology. 2018;88:17-23.
  • 22. Barugh AJ, Gray P, Shenkin SD, MacLullich AM, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: a systematic review. Journal of neurology. 2014;261(3):533-45.
  • 23. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews Neuroscience. 2009;10(6):397-409.
  • 24. Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress (Amsterdam, Netherlands). 2016;19(4):419-28.
  • 25. Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(3):1059-64.
  • 26. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004;24(11):2825-31.
  • 27. Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A. 2011;108(45):18459-64.
  • 28. Cleare AJ, Forsling M, Bond AJ. Neuroendocrine and hypothermic effects of 5-HT1A receptor stimulation with ipsapirone in healthy men: a placebo-controlled study. International clinical psychopharmacology. 1998;13(1):23-32.
  • 29. Koenig JI, Meltzer HY, Gudelsky GA. 5-Hydroxytryptamine1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacology, biochemistry, and behavior. 1988;29(4):711-5.
  • 30. Lorens SA, Van de Kar LD. Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology. 1987;45(4):305-10.
  • 31. Yatham LN, Shiah IS, Lam RW, Tam EM, Zis AP. Hypothermic, ACTH, and cortisol responses to ipsapirone in patients with mania and healthy controls. Journal of affective disorders. 1999;54(3):295-301.
  • 32. Zhang Y, Damjanoska KJ, Carrasco GA, Dudas B, D'Souza DN, Tetzlaff J, et al. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(21):9635-42.
  • 33. Torres-Farfan C, Richter HG, Rojas-Garcia P, Vergara M, Forcelledo ML, Valladares LE, et al. mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. The Journal of clinical endocrinology and metabolism. 2003;88(1):450-8.
  • 34. Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, et al. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. The Journal of physiology. 2008;586(16):4017-27.
  • 35. Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, et al. Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology. 2008;149(3):995-1003.
  • 36. Knoop A, Thomas A, Bidlingmaier M, Delahaut P, Schänzer W, Thevis M. Probing for corticotropin-releasing hormone (CRH) in human blood for doping control purposes using immunoaffinity purification and LC-HRMS/MS. Analytical Methods. 2017;9(29):4304-10.
  • 37. Endsin MJ, Michalec O, Manzon LA, Lovejoy DA, Manzon RG. CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. General and comparative endocrinology. 2017;240:162-73.
  • 38. Yadawa AK, Richa R, Chaturvedi CM. Herbicide Paraquat provokes the stress responses of HPA axis of laboratory mouse, Mus musculus. Pesticide Biochemistry and Physiology. 2019;153:106-15.
There are 38 citations in total.

Details

Primary Language English
Journal Section Volume IV, Issue II, 2019
Authors

Mustafa Can Güler 0000-0001-8588-1035

Tuncer Nacar 0000-0002-9287-7170

Ersen Eraslan This is me 0000-0003-2424-2269

Ayhan Tanyeli 0000-0002-0095-0917

Elif Polat This is me 0000-0003-0042-4084

Selim Çomaklı 0000-0002-8744-7686

Project Number 2016/64
Publication Date October 28, 2019
Published in Issue Year 2019 Volume: 4 Issue: 2

Cite

APA Güler, M. C., Nacar, T., Eraslan, E., Tanyeli, A., et al. (2019). The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats. Turkish Journal of Science, 4(2), 60-75.
AMA Güler MC, Nacar T, Eraslan E, Tanyeli A, Polat E, Çomaklı S. The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats. TJOS. October 2019;4(2):60-75.
Chicago Güler, Mustafa Can, Tuncer Nacar, Ersen Eraslan, Ayhan Tanyeli, Elif Polat, and Selim Çomaklı. “The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats”. Turkish Journal of Science 4, no. 2 (October 2019): 60-75.
EndNote Güler MC, Nacar T, Eraslan E, Tanyeli A, Polat E, Çomaklı S (October 1, 2019) The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats. Turkish Journal of Science 4 2 60–75.
IEEE M. C. Güler, T. Nacar, E. Eraslan, A. Tanyeli, E. Polat, and S. Çomaklı, “The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats”, TJOS, vol. 4, no. 2, pp. 60–75, 2019.
ISNAD Güler, Mustafa Can et al. “The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats”. Turkish Journal of Science 4/2 (October 2019), 60-75.
JAMA Güler MC, Nacar T, Eraslan E, Tanyeli A, Polat E, Çomaklı S. The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats. TJOS. 2019;4:60–75.
MLA Güler, Mustafa Can et al. “The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats”. Turkish Journal of Science, vol. 4, no. 2, 2019, pp. 60-75.
Vancouver Güler MC, Nacar T, Eraslan E, Tanyeli A, Polat E, Çomaklı S. The Effect of Peripheral Adropin Application on Hypothalamic Pituitary Adrenal Axis in Rats. TJOS. 2019;4(2):60-75.