Review
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 2, 55 - 67, 30.12.2023
https://doi.org/10.53663/turjfas.1280239

Abstract

References

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia plantarum, 53, 243-248. https://doi.org/10.1007/s10535-009-0046-7
  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2011). Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. persica and S. europaea). Acta Physiologiae Plantarum, 33, 1261-1270. https://doi.org/10.1007/s11738-010-0656-x
  • Ahmad, F., Hameed, M., Ahmad, M. S. A., & Ashraf, M. (2021). Ensuring Food Security of Arid Regions through Sustainable Cultivation of Halophytes. Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture, 2191-2210.
  • Ahmadzai, H., Tutundjian, S., & Elouafi, I. (2021). Policies for sustainable agriculture and livelihood in marginal lands: a review. Sustainability, 13(16), 8692. https://doi.org/10.3390/su13168692
  • Alfheeaid, H. A., Raheem, D., Ahmed, F., Alhodieb, F. S., Alsharari, Z. D., Alhaji, J. H., BinMowyna, M. N., Saraiva, A., & Raposo, A. (2022). Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods, 11(21), 3402. https://doi.org/10.3390/foods11213402
  • Alfio, M. R., Balacco, G., Parisi, A., Totaro, V., & Fidelibus, M. D. (2020). Drought index as an indicator of salinization of the Salento aquifer (Southern Italy). Water, 12(7), 1927. https://doi.org/10.3390/w12071927
  • Ali, M., Mustafa, A., Abideen, Z., & Gul, B. (2021). Bioenergy Production from Halophytes Crops for Sustainable Development. Energy and Environmental Security in Developing Countries, 571–586.
  • Aluwani, T. (2023). Agricultural Economic Growth, Renewable Energy Supply and CO2 Emissions Nexus. Economies, 11(3), 85. https://doi.org/10.3390/economies11030085
  • Amiri, B., Assareh, M. H., Rasouli, B., Jafari, M., Arzani, H., & Jafari, A. A. (2010). Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.). Caspian Journal of Environmental Sciences, 8(1), 79-87.
  • Ansari, S., Mostafazadeh-Fard, B., & Koupai, J. A. (2017). Soil salinity control under barley cultivation using a laboratory dry drainage model. In International Drainage Workshop of ICID, Ahwaz., IRAN, 4-7.
  • Araus, J. L., Rezzouk, F. Z., Thushar, S., Shahid, M., Elouafi, I. A., Bort, J., & Serret, M. D. (2021). Effect of irrigation salinity and ecotype on the growth, physiological indicators and seed yield and quality of Salicornia europaea. Plant Science, 304, 110819. https://doi.org/10.1016/j.plantsci.2021.110819
  • Arif, M., Jan, T., Munir, H., Rasul, F., Riaz, M., Fahad, S., ... & Mian, I. A. (2020). Climate-smart agriculture: assessment and adaptation strategies in changing climate. Global Climate Change and Environmental Policy: Agriculture Perspectives, 351-377.
  • Aronson, J. (1985). Economic halophytes—a global review. In Plants for Arid Lands: Proceedings of the Kew International Conference on Economic Plants for Arid Lands held in the Jodrell Laboratory, Royal Botanic Gardens, Kew, England, 23–27 July 1984 (pp. 177-188). Springer Netherlands.
  • Ayala, F., & O'Leary, J. W. (1995). Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. International Journal of Plant Sciences, 156(2), 197-205. https://doi.org/10.1086/297241
  • Aziz, I., Mujeeb, A., Belgacem, A. O., & Baig, M. B. (2022). Crop Diversification Using Saline Resources: Step Towards Climate-Smart Agriculture and Reclamation of Marginal Lands. In The Food Security, Biodiversity, and Climate Nexus (pp. 405-421). Cham: Springer International Publishing.
  • Bailis, R., & Yu, E. (2012). Environmental and social implications of integrated seawater agriculture systems producing Salicornia bigelovii for biofuel. Biofuels, 3(5), 555-574. https://doi.org/10.4155/bfs.12.50
  • Benson, T., & Ayiga, N. (2022). Classifying the Involvement of Men and Women in Climate Smart Agricultural Practices in Kayonza Sub-county, Kanungu District, Uganda. https://doi.org/10.11648/j.ijees.20220701.12
  • Benzougagh, B., Meshram, S.G., Fellah, B. El, Mastere, M., El Basri, M., Ouchen, I., Sadkaoui, D., Bammou, Y., Moutaoikil, N., & Turyasingura, B. (2023). Mapping of land degradation using spectral angle mapper approach (SAM): the case of Inaouene watershed (Northeast Morocco). Modeling Earth Systems and Environment, 1–11. https://doi.org/10.1007/s40808-023-01711-8
  • Blanc, E. (2012). The impact of climate change on crop yields in Sub-Saharan Africa. https://doi.org/ 10.4236/ajcc.2012.11001
  • Blore Jr, M. (2015). The role of social capital in community-based natural resource management: A case study from South Africa (Doctoral dissertation, University of Pretoria).
  • Campbell, B. M., Thornton, P., Zougmoré, R., Van Asten, P., & Lipper, L. (2014). Sustainable intensification: What is its role in climate-smart agriculture? Current Opinion in Environmental Sustainability, 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002
  • Cao, H., Zhu, Z., Balke, T., Zhang, L., & Bouma, T. J. (2018). Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnology and Oceanography, 63(2), 647–659. https://doi.org/10.1002/lno.10657
  • Caparrós, P. G., Ozturk, M., Gul, A., Batool, T. S., Pirasteh-Anosheh, H., Unal, B. T., Altay, V., & Toderich, K. N. (2022). Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environmental and Experimental Botany, 193, 104666. https://doi.org/10.1016/j.envexpbot.2021.104666
  • Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J. J., Grigore, M. N., & Perea-Flores, M. J. (2021). An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 191, 104606. https://doi.org/10.1016/j.envexpbot.2021.104606
  • Castagna, A., Mariottini, G., Gabriele, M., Longo, V., Souid, A., Dauvergne, X., ... & Ranieri, A. (2022). Nutritional composition and bioactivity of Salicornia europaea L. plants grown in monoculture or intercropped with tomato plants in salt-affected soils. Horticulturae, 8(9), 828. https://doi.org/10.3390/horticulturae8090828
  • Centofanti, T., & Bañuelos, G. (2019). Practical uses of halophytic plants as sources of food and fodder. In Halophytes and climate change: adaptive mechanisms and potential uses (pp. 324-342). Wallingford UK: CABI.
  • Change, I. P. on C. (2018). Global warming of 1.5° C: An IPCC special report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.
  • Chaturvedi, T., Christiansen, A. H. C., Gołębiewska, I., & Thomsen, M. H. (2021). Salicornia species: current status and future potential. In Future of Sustainable Agriculture in Saline Environments. https://doi.org/10.1201/9781003112327-31
  • Choi, D., Lim, G. S., Piao, Y. L., Choi, O. Y., Cho, K. A., Park, C. B., ... & Cho, H. (2014). Characterization, stability, and antioxidant activity of Salicornia herbaciea seed oil. Korean Journal of Chemical Engineering, 31, 2221-2228. https://doi.org/10.1007/s11814-014-0163-7
  • Collinson, P., Young, I., Antal, L., & Macbeth, H. (Eds.). (2022). Food and Sustainability in the Twenty-First Century: Cross-Disciplinary Perspectives. Berghahn Books.
  • Costa, C. S. B., Chaves, F. C., Rombaldi, C. V., & Souza, C. R. (2018). Bioactive compounds and antioxidant activity of three biotypes of the sea asparagus Sarcocornia ambigua (Michx.) MA Alonso & MB Crespo: A halophytic crop for cultivation with shrimp farm effluent. South African Journal of Botany, 117, 95-100.
  • Cuttelod, A., García, N., Malak, D. A., Temple, H. J., & Katariya, V. (2009). The Mediterranean: A biodiversity hotspot under threat. Wildlife in a Changing World–an Analysis of the 2008 IUCN Red List of Threatened Species, 89(2019), 9.
  • De Souza, M. M., Mendes, C. R., Doncato, K. B., Badiale-Furlong, E., & Costa, C. S. B. (2018). Growth, phenolics, photosynthetic pigments, and antioxidant response of two new genotypes of sea asparagus (Salicornia neei Lag.) to salinity under greenhouse and field conditions. Agriculture, 8(7), 115. https://doi.org/10.3390/agriculture8070115
  • Debez, A., Huchzermeyer, B., Abdelly, C., & Koyro, H.-W. (2011). Current challenges and future opportunities for sustainable utilization of halophytes. Sabkha Ecosystems: Volume III: Africa and Southern Europe, 59–77.
  • Ekanayake, S., Egodawatta, C., Attanayake, R. N., & Perera, D. (2023). From salt pan to saucepan: Salicornia, a halophytic vegetable with an array of potential health benefits. Food Frontiers, 4, 641–676. https://doi.org/10.1002/fft2.214
  • Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069–2094. https://doi.org/10.1007/s10311-020-01059-w
  • Ganesan, M., Trivedi, N., Gupta, V., Madhav, S. V., Radhakrishna Reddy, C., & Levine, I. A. (2019). Seaweed resources in India–current status of diversity and cultivation: prospects and challenges. Botanica Marina, 62(5), 463-482. https://doi.org/10.1515/bot-2018-0056
  • Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493(7433), 514-517. https://doi.org/10.1038/nature11811
  • Gispert, M., Kuliush, T., Dyachenko, L., Kharytonov, M., Emran, M., Verdaguer, D., Llorens, L., & Carrasco-Barea, L. (2021). Appraising soil carbon storage potential under perennial and annual Chenopodiaceae in the salt marsh of NE Spain. Estuarine, Coastal and Shelf Science, 252, 107240.
  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207
  • Glenn, E. P., O'Leary, J. W., Watson, M. C., Thompson, T. L., & Kuehl, R. O. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251(4997), 1065-1067. https://doi.org/10.1126/science.251.4997.1065
  • Gopi, M., Kumar, M. P., Jeevamani, J. J. J., Raja, S., Muruganandam, R., Samuel, V. D., Simon, N. T., Viswanathan, C., Abhilash, K. R., & Krishnan, P. (2019). Distribution and biodiversity of tropical salt marshes: Tamil Nadu and Puducherry, Southeast coast of India. Estuarine, Coastal and Shelf Science, 229, 106393. https://doi.org/10.1016/j.ecss.2019.106393
  • Gouda, M. S., & Elsebaie, E. M. (2016). Glasswort (Salicornia spp) as a source of bioactive compounds and its health benefits: a review. Alexandria Journal of Food Science and Technology, 13(1), 1–7. https://dx.doi.org/10.12816/0038461
  • Grattan, S. R., Benes, S. E., Peters, D. W., & Diaz, F. (2008). Feasibility of irrigating pickleweed (Salicornia bigelovii Torr) with hyper-saline drainage water. Journal of Environmental Quality, 37(S5), S-149. https://doi.org/10.2134/jeq2007.0450
  • Group, W. B. (2016). The World Bank Group A to Z 2016. World Bank Publications.
  • Guerin, L. J., & Guerin, T. F. (1994). Constraints to the adoption of innovations in agricultural research and environmental management: a review. Australian Journal of Experimental Agriculture, 34(4), 549-571. https://doi.org/10.1071/EA9940549
  • Gunning, D. (2016). Cultivating Salicornia europaea (marsh samphire). Dublin, Ireland: Irish Sea Fisheries Board, 4, 1–95.
  • Hamed, K. B., Castagna, A., Ranieri, A., Garcia-Caparros, P., Santin, M., Hernandez, J. A., & Espin, G. B. (2021). Halophyte based Mediterranean agriculture in the contexts of food insecurity and global climate change. Environmental and Experimental Botany, 191, 104601. https://doi.org/10.1016/j.envexpbot.2021.104601
  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., ... & Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1-43. https://doi.org/10.1890/ES14-00534.1
  • Holguin Pena, R. J., Medina Hernandez, D., Ghasemi, M., & Rueda Puente, E. O. (2021). Salt tolerant plants as a valuable resource for sustainable food production in arid and saline coastal zones. Acta Biológica Colombiana, 26(1), 116-126. https://doi.org/10.15446/abc.v26n1.82412
  • Isca, V., Seca, A. M., Pinto, D. C., & Silva, A. (2014). An overview of Salicornia genus: The phytochemical and pharmacological profile. Natural Products: Research Reviews, 2, 145–164. http://hdl.handle.net/10400.3/2374
  • Joshi, A., Kanthaliya, B., & Arora, J. (2020). Halophytes: The nonconventional crops as source of biofuel production. Handbook of halophytes: From molecules to ecosystems towards biosaline agriculture, 1-28.
  • Khan, M. A., Böer, B., Öztürk, M., Al Abdessalaam, T. Z., Clüsener-Godt, M., & Gul, B. (2014). Sabkha ecosystems: Volume IV: cash crop halophyte and biodiversity conservation (Vol. 47). Springer.
  • Khan, M. A., Gul, B., & Weber, D. J. (2000). Germination responses of Salicornia rubra to temperature and salinity. Journal of Arid Environments, 45(3), 207-214. https://doi.org/10.1006/jare.2000.0640
  • Loconsole, D., Cristiano, G., & De Lucia, B. (2019). Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture, 9(1), 14. https://doi.org/10.3390/agriculture9010014
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Makkawi, Y., El Sayed, Y., Lyra, D. A., Pour, F. H., Khan, M., & Badrelzaman, M. (2021). Assessment of the pyrolysis products from halophyte Salicornia bigelovii cultivated in a desert environment. Fuel, 290, 119518.
  • Martinez-Garcia, R. (2010). Physiological studies of the halophyte Salicornia bigelovii: A potential food and biofuel crop for integrated aquaculture-agriculture systems (Doctoral dissertation, The University of Arizona).
  • Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829. https://doi.org/10.3389/fpls.2017.00829
  • Mohammadi, H., & Kardan, J. (2015). Morphological and physiological responses of some halophytes to salinity stress. Annales Universitatis Mariae Curie-Sklodowska, Sectio C–Biologia, 70(2).
  • Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14, 577–605. https://doi.org/10.1007/s11101-015-9394-4
  • Muscolo, A., Panuccio, M. R., & Piernik, A. (2014). Ecology, Distribution, and Ecophysiology of Salicornia Europaea L. Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation, 233–240.
  • Negacz, K., Bruning, B., & Vellinga, P. (2021). Achieving Multiple Sustainable Development Goals through Saline Agriculture. Future of Sustainable Agriculture in Saline Environments, 13-28.
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52-68. https://doi.org/10.1016/j.pecs.2010.01.003
  • Ozturk, M., Altay, V., Orçen, N., Yaprak, A. E., Tuğ, G. N., & Güvensen, A. (2018). A little-known and a little-consumed natural resource: Salicornia. Global Perspectives on Underutilized Crops, 83–108.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Patel, S. (2016). Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. Biotech, 6(1), 104. https://doi.org/10.1007/s13205-016-0418-6
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282–295. https://doi.org/10.1111/1477-8947.12054
  • Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 859. https://doi.org/10.3390/agronomy10060859
  • Rathore, M. S., Balar, N., & Jha, B. (2019). Population structure and developmental stage-associated ecophysiological responses of Salicornia brachiata. Ecological Research, 34(5), 644–658. https://doi.org/10.1111/1440-1703.12033
  • Rey, Jorge R., et al. "Above-ground primary production in impounded, ditched, and natural Batis-Salicornia marshes along the Indian River Lagoon, Florida, USA." Wetlands 10.2 (1990): 151-171. https://doi.org/10.1007/BF03160830
  • Rozentsvet, O. A., Nesterov, V. N., & Bogdanova, E. S. (2017). Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russian Journal of Plant Physiology, 64, 464–477. https://doi.org/10.1134/S1021443717040112
  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, v. 17. https://doi.org/10.7537/marsnsj170119.06
  • Sani, Y. M., Daud, W. M. A. W., & Aziz, A. A. (2012). Biodiesel feedstock and production technologies: Successes, challenges and prospects. Biodiesel-Feedstocks, Production, and Applications, 10, 52790.
  • Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372. https://doi.org/10.3389/fpls.2016.01372
  • Singh, D., Buhmann, A. K., Flowers, T. J., Seal, C. E., & Papenbrock, J. (2014). Salicornia as a crop plant in temperate regions: Selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants, 6. https://doi.org/10.1093/aobpla/plu071
  • Song, J., Fan, H., Zhao, Y., Jia, Y., Du, X., & Wang, B. (2008). Effect of salinity on germination, seedling emergence, seedling growth, and ion accumulation of a halophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany, 88(4), 331–337. https://doi.org/10.1016/j.aquabot.2007.11.004
  • Turcios, A. E., Cayenne, A., Uellendahl, H., & Papenbrock, J. (2021). Halophyte plants and their residues as feedstock for biogas production—Chances and challenges. Applied Sciences, 11(6), 2746. https://doi.org/10.3390/app11062746
  • Turyasingura, B. (2022). Review on the Impacts of Climate Change on the Plant Water Interactions. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670, 6(7), 223.
  • Turyasingura, B., & Chavula, P. (2022). Climate-Smart Agricultural Extension Service Innovation Approaches in Uganda: Review Paper. International Journal of Food Science and Agriculture, 6(1), 35–43. https://doi.org/10.26855/ijfsa.2022.03.006
  • Turyasingura, B., Alex, S., Hirwa, H., & Mohammed, F. S. (2022). Wetland conservation and management practices in Rubanda District, South-Western Uganda. https://doi.org/10.21203/rs.3.rs-1876968/v1
  • Turyasingura, B., Ayiga, N., & Benzougagh, B. (2022). Re-thinking on land degradation and its impacts on livelihoods of the farmers in Kanungu District, Uganda. https://doi.org/10.21203/rs.3.rs-1966742/v1
  • Turyasingura, B., Chavula, P., Hirwa, H., Mohammed, F. S., Ayiga, N., Bojago, E., Benzougagh, B., & Ngabirano, H. (2022). A Systematic Review and Meta-analysis of Climate Change and Water Resources in Sub-Sahara Africa. https://doi.org/10.21203/rs.3.rs-2281917/v1
  • Turyasingura, B., Mwanjalolo, M., & Ayiga, N. (2022). Diversity at Landscape Level to Increase Resilience. A Review. East African Journal of Environment and Natural Resources, 5(1), 174–181. https://doi.org/10.37284/eajenr.5.1.723
  • Turyasingura, B., Tumwesigye, W., Atuhaire, A., Tumushabe, J. T., & Akatwijuka, R. (2023). A literature review of climate-smart landscapes as a tool in soil-water management in Sub-Saharan Africa. https://nru.uncst.go.ug/handle/123456789/8144
  • Urbano, M., Tomaselli, V., Bisignano, V., Veronico, G., Hammer, K., & Laghetti, G. (2017). Salicornia patula Duval-Jouve: From gathering of wild plants to some attempts of cultivation in Apulia region (southern Italy). Genetic Resources and Crop Evolution, 64, 1465–1472. https://doi.org/10.1007/s10722-017-0521-5
  • USDA FoodData Central (2019). "National Nutrient Database for Standard Reference Legacy Release." United States Department of Agriculture, Agricultural Research Service. Available at: https://fdc.nal.usda.gov/
  • Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144-153. https://doi.org/10.1016/j.envexpbot.2012.07.010
  • Ventura, Y., Wuddineh, W. A., Myrzabayeva, M., Alikulov, Z., Khozin-Goldberg, I., Shpigel, M., Samocha, T. M., & Sagi, M. (2011a). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 128(3), 189–196. https://doi.org/10.1016/j.scienta.2011.02.001
  • Ventura, Y., Wuddineh, W. A., Shpigel, M., Samocha, T. M., Klim, B. C., Cohen, S., Shemer, Z., Santos, R., & Sagi, M. (2011b). Effects of day length on flowering and yield production of Salicornia and Sarcocornia species. Scientia Horticulturae, 130(3), 510–516. https://doi.org/10.1016/j.scienta.2011.08.008
  • Volkov, V. (2015). Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 6, 873. https://doi.org/10.3389/fpls.2015.00873
  • Wang, X., Fan, P., Song, H., Chen, X., Li, X., & Li, Y. (2009). Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research, 8(7), 3331–3345. https://doi.org/10.1021/pr801083a
  • Wratten, S. D., Sandhu, H., Cullen, R., & Costanza, R. (Eds.). (2013). Ecosystem services in agricultural and urban landscapes (Vol. 152). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781118506271.ch8
  • Yuan, F., Guo, J., Shabala, S., & Wang, B. (2019). Reproductive physiology of halophytes: Current standing. Frontiers in Plant Science, 9, 1954. https://doi.org/10.3389/fpls.2018.01954
  • Zedler, J. B. (1996). Coastal mitigation in southern California: the need for a regional restoration strategy. Ecological Applications, 6(1), 84–93. https://doi.org/10.2307/2269555

Salicornia as a salt-tolerant crop: potential for addressing climate change challenges and sustainable agriculture development

Year 2023, Volume: 5 Issue: 2, 55 - 67, 30.12.2023
https://doi.org/10.53663/turjfas.1280239

Abstract

Halophyte plant Salicornia has potential uses in farming and environmental management. Salicornia is one of the most important families of halophytes and known for its exceptional salt tolerance. It thrives well in saline habitats near coastal areas. A comprehensive review paper provides an overview of Salicornia, including details on the impact of temperature and salinity on the germination of different ecotypes, as well as the influence of day length and salinity on seedling establishment. Salicornia L. presents a promising opportunity for sustainable agriculture and economic development as it may improve the lives and livelihoods of underprivileged groups while also benefiting the environment through carbon sequestration, soil preservation, and biodiversity preservation.

References

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia plantarum, 53, 243-248. https://doi.org/10.1007/s10535-009-0046-7
  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2011). Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. persica and S. europaea). Acta Physiologiae Plantarum, 33, 1261-1270. https://doi.org/10.1007/s11738-010-0656-x
  • Ahmad, F., Hameed, M., Ahmad, M. S. A., & Ashraf, M. (2021). Ensuring Food Security of Arid Regions through Sustainable Cultivation of Halophytes. Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture, 2191-2210.
  • Ahmadzai, H., Tutundjian, S., & Elouafi, I. (2021). Policies for sustainable agriculture and livelihood in marginal lands: a review. Sustainability, 13(16), 8692. https://doi.org/10.3390/su13168692
  • Alfheeaid, H. A., Raheem, D., Ahmed, F., Alhodieb, F. S., Alsharari, Z. D., Alhaji, J. H., BinMowyna, M. N., Saraiva, A., & Raposo, A. (2022). Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods, 11(21), 3402. https://doi.org/10.3390/foods11213402
  • Alfio, M. R., Balacco, G., Parisi, A., Totaro, V., & Fidelibus, M. D. (2020). Drought index as an indicator of salinization of the Salento aquifer (Southern Italy). Water, 12(7), 1927. https://doi.org/10.3390/w12071927
  • Ali, M., Mustafa, A., Abideen, Z., & Gul, B. (2021). Bioenergy Production from Halophytes Crops for Sustainable Development. Energy and Environmental Security in Developing Countries, 571–586.
  • Aluwani, T. (2023). Agricultural Economic Growth, Renewable Energy Supply and CO2 Emissions Nexus. Economies, 11(3), 85. https://doi.org/10.3390/economies11030085
  • Amiri, B., Assareh, M. H., Rasouli, B., Jafari, M., Arzani, H., & Jafari, A. A. (2010). Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.). Caspian Journal of Environmental Sciences, 8(1), 79-87.
  • Ansari, S., Mostafazadeh-Fard, B., & Koupai, J. A. (2017). Soil salinity control under barley cultivation using a laboratory dry drainage model. In International Drainage Workshop of ICID, Ahwaz., IRAN, 4-7.
  • Araus, J. L., Rezzouk, F. Z., Thushar, S., Shahid, M., Elouafi, I. A., Bort, J., & Serret, M. D. (2021). Effect of irrigation salinity and ecotype on the growth, physiological indicators and seed yield and quality of Salicornia europaea. Plant Science, 304, 110819. https://doi.org/10.1016/j.plantsci.2021.110819
  • Arif, M., Jan, T., Munir, H., Rasul, F., Riaz, M., Fahad, S., ... & Mian, I. A. (2020). Climate-smart agriculture: assessment and adaptation strategies in changing climate. Global Climate Change and Environmental Policy: Agriculture Perspectives, 351-377.
  • Aronson, J. (1985). Economic halophytes—a global review. In Plants for Arid Lands: Proceedings of the Kew International Conference on Economic Plants for Arid Lands held in the Jodrell Laboratory, Royal Botanic Gardens, Kew, England, 23–27 July 1984 (pp. 177-188). Springer Netherlands.
  • Ayala, F., & O'Leary, J. W. (1995). Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. International Journal of Plant Sciences, 156(2), 197-205. https://doi.org/10.1086/297241
  • Aziz, I., Mujeeb, A., Belgacem, A. O., & Baig, M. B. (2022). Crop Diversification Using Saline Resources: Step Towards Climate-Smart Agriculture and Reclamation of Marginal Lands. In The Food Security, Biodiversity, and Climate Nexus (pp. 405-421). Cham: Springer International Publishing.
  • Bailis, R., & Yu, E. (2012). Environmental and social implications of integrated seawater agriculture systems producing Salicornia bigelovii for biofuel. Biofuels, 3(5), 555-574. https://doi.org/10.4155/bfs.12.50
  • Benson, T., & Ayiga, N. (2022). Classifying the Involvement of Men and Women in Climate Smart Agricultural Practices in Kayonza Sub-county, Kanungu District, Uganda. https://doi.org/10.11648/j.ijees.20220701.12
  • Benzougagh, B., Meshram, S.G., Fellah, B. El, Mastere, M., El Basri, M., Ouchen, I., Sadkaoui, D., Bammou, Y., Moutaoikil, N., & Turyasingura, B. (2023). Mapping of land degradation using spectral angle mapper approach (SAM): the case of Inaouene watershed (Northeast Morocco). Modeling Earth Systems and Environment, 1–11. https://doi.org/10.1007/s40808-023-01711-8
  • Blanc, E. (2012). The impact of climate change on crop yields in Sub-Saharan Africa. https://doi.org/ 10.4236/ajcc.2012.11001
  • Blore Jr, M. (2015). The role of social capital in community-based natural resource management: A case study from South Africa (Doctoral dissertation, University of Pretoria).
  • Campbell, B. M., Thornton, P., Zougmoré, R., Van Asten, P., & Lipper, L. (2014). Sustainable intensification: What is its role in climate-smart agriculture? Current Opinion in Environmental Sustainability, 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002
  • Cao, H., Zhu, Z., Balke, T., Zhang, L., & Bouma, T. J. (2018). Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnology and Oceanography, 63(2), 647–659. https://doi.org/10.1002/lno.10657
  • Caparrós, P. G., Ozturk, M., Gul, A., Batool, T. S., Pirasteh-Anosheh, H., Unal, B. T., Altay, V., & Toderich, K. N. (2022). Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environmental and Experimental Botany, 193, 104666. https://doi.org/10.1016/j.envexpbot.2021.104666
  • Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J. J., Grigore, M. N., & Perea-Flores, M. J. (2021). An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 191, 104606. https://doi.org/10.1016/j.envexpbot.2021.104606
  • Castagna, A., Mariottini, G., Gabriele, M., Longo, V., Souid, A., Dauvergne, X., ... & Ranieri, A. (2022). Nutritional composition and bioactivity of Salicornia europaea L. plants grown in monoculture or intercropped with tomato plants in salt-affected soils. Horticulturae, 8(9), 828. https://doi.org/10.3390/horticulturae8090828
  • Centofanti, T., & Bañuelos, G. (2019). Practical uses of halophytic plants as sources of food and fodder. In Halophytes and climate change: adaptive mechanisms and potential uses (pp. 324-342). Wallingford UK: CABI.
  • Change, I. P. on C. (2018). Global warming of 1.5° C: An IPCC special report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.
  • Chaturvedi, T., Christiansen, A. H. C., Gołębiewska, I., & Thomsen, M. H. (2021). Salicornia species: current status and future potential. In Future of Sustainable Agriculture in Saline Environments. https://doi.org/10.1201/9781003112327-31
  • Choi, D., Lim, G. S., Piao, Y. L., Choi, O. Y., Cho, K. A., Park, C. B., ... & Cho, H. (2014). Characterization, stability, and antioxidant activity of Salicornia herbaciea seed oil. Korean Journal of Chemical Engineering, 31, 2221-2228. https://doi.org/10.1007/s11814-014-0163-7
  • Collinson, P., Young, I., Antal, L., & Macbeth, H. (Eds.). (2022). Food and Sustainability in the Twenty-First Century: Cross-Disciplinary Perspectives. Berghahn Books.
  • Costa, C. S. B., Chaves, F. C., Rombaldi, C. V., & Souza, C. R. (2018). Bioactive compounds and antioxidant activity of three biotypes of the sea asparagus Sarcocornia ambigua (Michx.) MA Alonso & MB Crespo: A halophytic crop for cultivation with shrimp farm effluent. South African Journal of Botany, 117, 95-100.
  • Cuttelod, A., García, N., Malak, D. A., Temple, H. J., & Katariya, V. (2009). The Mediterranean: A biodiversity hotspot under threat. Wildlife in a Changing World–an Analysis of the 2008 IUCN Red List of Threatened Species, 89(2019), 9.
  • De Souza, M. M., Mendes, C. R., Doncato, K. B., Badiale-Furlong, E., & Costa, C. S. B. (2018). Growth, phenolics, photosynthetic pigments, and antioxidant response of two new genotypes of sea asparagus (Salicornia neei Lag.) to salinity under greenhouse and field conditions. Agriculture, 8(7), 115. https://doi.org/10.3390/agriculture8070115
  • Debez, A., Huchzermeyer, B., Abdelly, C., & Koyro, H.-W. (2011). Current challenges and future opportunities for sustainable utilization of halophytes. Sabkha Ecosystems: Volume III: Africa and Southern Europe, 59–77.
  • Ekanayake, S., Egodawatta, C., Attanayake, R. N., & Perera, D. (2023). From salt pan to saucepan: Salicornia, a halophytic vegetable with an array of potential health benefits. Food Frontiers, 4, 641–676. https://doi.org/10.1002/fft2.214
  • Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069–2094. https://doi.org/10.1007/s10311-020-01059-w
  • Ganesan, M., Trivedi, N., Gupta, V., Madhav, S. V., Radhakrishna Reddy, C., & Levine, I. A. (2019). Seaweed resources in India–current status of diversity and cultivation: prospects and challenges. Botanica Marina, 62(5), 463-482. https://doi.org/10.1515/bot-2018-0056
  • Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493(7433), 514-517. https://doi.org/10.1038/nature11811
  • Gispert, M., Kuliush, T., Dyachenko, L., Kharytonov, M., Emran, M., Verdaguer, D., Llorens, L., & Carrasco-Barea, L. (2021). Appraising soil carbon storage potential under perennial and annual Chenopodiaceae in the salt marsh of NE Spain. Estuarine, Coastal and Shelf Science, 252, 107240.
  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207
  • Glenn, E. P., O'Leary, J. W., Watson, M. C., Thompson, T. L., & Kuehl, R. O. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251(4997), 1065-1067. https://doi.org/10.1126/science.251.4997.1065
  • Gopi, M., Kumar, M. P., Jeevamani, J. J. J., Raja, S., Muruganandam, R., Samuel, V. D., Simon, N. T., Viswanathan, C., Abhilash, K. R., & Krishnan, P. (2019). Distribution and biodiversity of tropical salt marshes: Tamil Nadu and Puducherry, Southeast coast of India. Estuarine, Coastal and Shelf Science, 229, 106393. https://doi.org/10.1016/j.ecss.2019.106393
  • Gouda, M. S., & Elsebaie, E. M. (2016). Glasswort (Salicornia spp) as a source of bioactive compounds and its health benefits: a review. Alexandria Journal of Food Science and Technology, 13(1), 1–7. https://dx.doi.org/10.12816/0038461
  • Grattan, S. R., Benes, S. E., Peters, D. W., & Diaz, F. (2008). Feasibility of irrigating pickleweed (Salicornia bigelovii Torr) with hyper-saline drainage water. Journal of Environmental Quality, 37(S5), S-149. https://doi.org/10.2134/jeq2007.0450
  • Group, W. B. (2016). The World Bank Group A to Z 2016. World Bank Publications.
  • Guerin, L. J., & Guerin, T. F. (1994). Constraints to the adoption of innovations in agricultural research and environmental management: a review. Australian Journal of Experimental Agriculture, 34(4), 549-571. https://doi.org/10.1071/EA9940549
  • Gunning, D. (2016). Cultivating Salicornia europaea (marsh samphire). Dublin, Ireland: Irish Sea Fisheries Board, 4, 1–95.
  • Hamed, K. B., Castagna, A., Ranieri, A., Garcia-Caparros, P., Santin, M., Hernandez, J. A., & Espin, G. B. (2021). Halophyte based Mediterranean agriculture in the contexts of food insecurity and global climate change. Environmental and Experimental Botany, 191, 104601. https://doi.org/10.1016/j.envexpbot.2021.104601
  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., ... & Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1-43. https://doi.org/10.1890/ES14-00534.1
  • Holguin Pena, R. J., Medina Hernandez, D., Ghasemi, M., & Rueda Puente, E. O. (2021). Salt tolerant plants as a valuable resource for sustainable food production in arid and saline coastal zones. Acta Biológica Colombiana, 26(1), 116-126. https://doi.org/10.15446/abc.v26n1.82412
  • Isca, V., Seca, A. M., Pinto, D. C., & Silva, A. (2014). An overview of Salicornia genus: The phytochemical and pharmacological profile. Natural Products: Research Reviews, 2, 145–164. http://hdl.handle.net/10400.3/2374
  • Joshi, A., Kanthaliya, B., & Arora, J. (2020). Halophytes: The nonconventional crops as source of biofuel production. Handbook of halophytes: From molecules to ecosystems towards biosaline agriculture, 1-28.
  • Khan, M. A., Böer, B., Öztürk, M., Al Abdessalaam, T. Z., Clüsener-Godt, M., & Gul, B. (2014). Sabkha ecosystems: Volume IV: cash crop halophyte and biodiversity conservation (Vol. 47). Springer.
  • Khan, M. A., Gul, B., & Weber, D. J. (2000). Germination responses of Salicornia rubra to temperature and salinity. Journal of Arid Environments, 45(3), 207-214. https://doi.org/10.1006/jare.2000.0640
  • Loconsole, D., Cristiano, G., & De Lucia, B. (2019). Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture, 9(1), 14. https://doi.org/10.3390/agriculture9010014
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Makkawi, Y., El Sayed, Y., Lyra, D. A., Pour, F. H., Khan, M., & Badrelzaman, M. (2021). Assessment of the pyrolysis products from halophyte Salicornia bigelovii cultivated in a desert environment. Fuel, 290, 119518.
  • Martinez-Garcia, R. (2010). Physiological studies of the halophyte Salicornia bigelovii: A potential food and biofuel crop for integrated aquaculture-agriculture systems (Doctoral dissertation, The University of Arizona).
  • Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829. https://doi.org/10.3389/fpls.2017.00829
  • Mohammadi, H., & Kardan, J. (2015). Morphological and physiological responses of some halophytes to salinity stress. Annales Universitatis Mariae Curie-Sklodowska, Sectio C–Biologia, 70(2).
  • Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14, 577–605. https://doi.org/10.1007/s11101-015-9394-4
  • Muscolo, A., Panuccio, M. R., & Piernik, A. (2014). Ecology, Distribution, and Ecophysiology of Salicornia Europaea L. Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation, 233–240.
  • Negacz, K., Bruning, B., & Vellinga, P. (2021). Achieving Multiple Sustainable Development Goals through Saline Agriculture. Future of Sustainable Agriculture in Saline Environments, 13-28.
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52-68. https://doi.org/10.1016/j.pecs.2010.01.003
  • Ozturk, M., Altay, V., Orçen, N., Yaprak, A. E., Tuğ, G. N., & Güvensen, A. (2018). A little-known and a little-consumed natural resource: Salicornia. Global Perspectives on Underutilized Crops, 83–108.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Patel, S. (2016). Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. Biotech, 6(1), 104. https://doi.org/10.1007/s13205-016-0418-6
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282–295. https://doi.org/10.1111/1477-8947.12054
  • Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 859. https://doi.org/10.3390/agronomy10060859
  • Rathore, M. S., Balar, N., & Jha, B. (2019). Population structure and developmental stage-associated ecophysiological responses of Salicornia brachiata. Ecological Research, 34(5), 644–658. https://doi.org/10.1111/1440-1703.12033
  • Rey, Jorge R., et al. "Above-ground primary production in impounded, ditched, and natural Batis-Salicornia marshes along the Indian River Lagoon, Florida, USA." Wetlands 10.2 (1990): 151-171. https://doi.org/10.1007/BF03160830
  • Rozentsvet, O. A., Nesterov, V. N., & Bogdanova, E. S. (2017). Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russian Journal of Plant Physiology, 64, 464–477. https://doi.org/10.1134/S1021443717040112
  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, v. 17. https://doi.org/10.7537/marsnsj170119.06
  • Sani, Y. M., Daud, W. M. A. W., & Aziz, A. A. (2012). Biodiesel feedstock and production technologies: Successes, challenges and prospects. Biodiesel-Feedstocks, Production, and Applications, 10, 52790.
  • Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372. https://doi.org/10.3389/fpls.2016.01372
  • Singh, D., Buhmann, A. K., Flowers, T. J., Seal, C. E., & Papenbrock, J. (2014). Salicornia as a crop plant in temperate regions: Selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants, 6. https://doi.org/10.1093/aobpla/plu071
  • Song, J., Fan, H., Zhao, Y., Jia, Y., Du, X., & Wang, B. (2008). Effect of salinity on germination, seedling emergence, seedling growth, and ion accumulation of a halophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany, 88(4), 331–337. https://doi.org/10.1016/j.aquabot.2007.11.004
  • Turcios, A. E., Cayenne, A., Uellendahl, H., & Papenbrock, J. (2021). Halophyte plants and their residues as feedstock for biogas production—Chances and challenges. Applied Sciences, 11(6), 2746. https://doi.org/10.3390/app11062746
  • Turyasingura, B. (2022). Review on the Impacts of Climate Change on the Plant Water Interactions. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670, 6(7), 223.
  • Turyasingura, B., & Chavula, P. (2022). Climate-Smart Agricultural Extension Service Innovation Approaches in Uganda: Review Paper. International Journal of Food Science and Agriculture, 6(1), 35–43. https://doi.org/10.26855/ijfsa.2022.03.006
  • Turyasingura, B., Alex, S., Hirwa, H., & Mohammed, F. S. (2022). Wetland conservation and management practices in Rubanda District, South-Western Uganda. https://doi.org/10.21203/rs.3.rs-1876968/v1
  • Turyasingura, B., Ayiga, N., & Benzougagh, B. (2022). Re-thinking on land degradation and its impacts on livelihoods of the farmers in Kanungu District, Uganda. https://doi.org/10.21203/rs.3.rs-1966742/v1
  • Turyasingura, B., Chavula, P., Hirwa, H., Mohammed, F. S., Ayiga, N., Bojago, E., Benzougagh, B., & Ngabirano, H. (2022). A Systematic Review and Meta-analysis of Climate Change and Water Resources in Sub-Sahara Africa. https://doi.org/10.21203/rs.3.rs-2281917/v1
  • Turyasingura, B., Mwanjalolo, M., & Ayiga, N. (2022). Diversity at Landscape Level to Increase Resilience. A Review. East African Journal of Environment and Natural Resources, 5(1), 174–181. https://doi.org/10.37284/eajenr.5.1.723
  • Turyasingura, B., Tumwesigye, W., Atuhaire, A., Tumushabe, J. T., & Akatwijuka, R. (2023). A literature review of climate-smart landscapes as a tool in soil-water management in Sub-Saharan Africa. https://nru.uncst.go.ug/handle/123456789/8144
  • Urbano, M., Tomaselli, V., Bisignano, V., Veronico, G., Hammer, K., & Laghetti, G. (2017). Salicornia patula Duval-Jouve: From gathering of wild plants to some attempts of cultivation in Apulia region (southern Italy). Genetic Resources and Crop Evolution, 64, 1465–1472. https://doi.org/10.1007/s10722-017-0521-5
  • USDA FoodData Central (2019). "National Nutrient Database for Standard Reference Legacy Release." United States Department of Agriculture, Agricultural Research Service. Available at: https://fdc.nal.usda.gov/
  • Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144-153. https://doi.org/10.1016/j.envexpbot.2012.07.010
  • Ventura, Y., Wuddineh, W. A., Myrzabayeva, M., Alikulov, Z., Khozin-Goldberg, I., Shpigel, M., Samocha, T. M., & Sagi, M. (2011a). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 128(3), 189–196. https://doi.org/10.1016/j.scienta.2011.02.001
  • Ventura, Y., Wuddineh, W. A., Shpigel, M., Samocha, T. M., Klim, B. C., Cohen, S., Shemer, Z., Santos, R., & Sagi, M. (2011b). Effects of day length on flowering and yield production of Salicornia and Sarcocornia species. Scientia Horticulturae, 130(3), 510–516. https://doi.org/10.1016/j.scienta.2011.08.008
  • Volkov, V. (2015). Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 6, 873. https://doi.org/10.3389/fpls.2015.00873
  • Wang, X., Fan, P., Song, H., Chen, X., Li, X., & Li, Y. (2009). Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research, 8(7), 3331–3345. https://doi.org/10.1021/pr801083a
  • Wratten, S. D., Sandhu, H., Cullen, R., & Costanza, R. (Eds.). (2013). Ecosystem services in agricultural and urban landscapes (Vol. 152). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781118506271.ch8
  • Yuan, F., Guo, J., Shabala, S., & Wang, B. (2019). Reproductive physiology of halophytes: Current standing. Frontiers in Plant Science, 9, 1954. https://doi.org/10.3389/fpls.2018.01954
  • Zedler, J. B. (1996). Coastal mitigation in southern California: the need for a regional restoration strategy. Ecological Applications, 6(1), 84–93. https://doi.org/10.2307/2269555
There are 95 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Review
Authors

Shambhu Katel 0000-0001-6956-3934

Shubh Pravat Singh Yadav 0000-0003-3987-5616

Benson Turyasıngura 0000-0003-1325-4483

Aman Mehta 0000-0003-1628-1161

Publication Date December 30, 2023
Submission Date April 10, 2023
Acceptance Date May 8, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Katel, S., Yadav, S. P. S., Turyasıngura, B., Mehta, A. (2023). Salicornia as a salt-tolerant crop: potential for addressing climate change challenges and sustainable agriculture development. Turkish Journal of Food and Agriculture Sciences, 5(2), 55-67. https://doi.org/10.53663/turjfas.1280239

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci