Research Article
BibTex RIS Cite

Determination of Antioxidant and Some Biochemical Properties of Different Extracts of Tribulus Terrestris

Year 2024, Volume: 4 Issue: 1, 694 - 708, 25.04.2024

Abstract

Objective: This study determined the antioxidant and total phenolic substance amounts of different extracts (petroleum ether, chloroform, methanol, ethanol) obtained from the iron Tribulus terrestris plant. Methods: Antioxidant activities of the extracts were examined using CUPRAC, FRAP, DPPH, and ABTS methods. In addition, its effects on acetylcholine esterase (AChE) and butyrylcholine esterase (BChE) activities were evaluated in vitro. Results: According to the findings, methanol extract had the highest total phenolic substance amount (63.59±4.33 μg gallic acid/mg extract). In terms of CUPRAC reducing capacity, it was determined that methanol extract had the most substantial effect among the extracts, although it was lower than standard antioxidants. According to the FRAP method, methanol extract had the highest reduction capacity with a 1.47 μmol Fe2+/mg extract value. Similar results were seen with radical scavenging effects. It was the methanol extract with the highest radical scavenging capacity, according to DPPH and ABTS methods. It showed this effect with an IC50 value of 24.39 μg/mL according to the DPPH method and an extract value of 0.47 μg/μg according to the ABTS method. When the enzyme inhibition results were examined, it was seen that the methanol extract had the most potent inhibition effect with an IC50 value of 17.29 μg/mL for the AChE enzyme and 18.23 μg/mL for BChE. Conclusions: According to the results obtained, evidence was obtained that the extracts obtained from the iron thistle plant have an antioxidant effect and may be an option in the treatment of Alzheimer's disease with their inhibition effect on AChE and BChE enzyme activities.

Project Number

KBÜBAP-22-YL-016

References

  • Abbas, M. W., Hussain, M., Akhtar, S., Ismail, T., Qamar, M., Shafiq, Z., & Esatbeyoglu, T. (2022). Bioactive compounds, antioxidant, anti-inflammatory, anti-cancer, and toxicity assessment of Tribulus terrestris—in vitro and in vivo studies. Antioxidants, 11(6), 1160. http://dx.doi.org/10.3390/antiox11061160
  • Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions, 174(1), 27-37. http://dx.doi.org/10.1016/j.cbi.2008.05.003
  • Akyol, H., & Kuzu, M. (2017). In vitro effects of some heavy metal ions on cytosolic thioredoxin reductase purified from rainbow trout gill tissues. Fresenius Environmental Bulletin, 26, 4677-4683.
  • Amin, A. M. R., Lotfy, M., Shafiullah, M., & Adeghate, E. (2006). The protective effect of Tribulus terrestris in diabetes. Annals of the New York Academy of Sciences, 1084(1), 391-401. http://dx.doi.org/10.1196/annals.1372.005
  • Amorati, R., & Valgimigli, L. (2018). Methods to measure the antioxidant activity of phytochemicals and plant extracts. Journal of Agricultural and Food Chemistry, 66(13), 3324-3329. http://dx.doi.org/10.1021/acs.jafc.8b01079
  • Anand, R., Patnaik, G. K., Kulshreshtha, D. K., & Dhawan, B. N. (1994). Activity of certain fractions of Tribulus terrestris fruits against experimentally induced urolithiasis in rats. Indian journal of experimental biology, 32(8), 548-552. https://europepmc.org/article/med/7959935
  • Asaduzzaman, M., Uddin, M. J., Kader, M. A., Alam, A. H. M. K., Rahman, A. A., Rashid, M., ... & Sadik, G. (2014). In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer's disease. Psychogeriatrics, 14(1), 1-10. http://dx.doi.org/10.1111/psyg.12031
  • Aydın, F. G., Türkoğlu, E. A., Kuzu, M., & Taşkın, T. (2021). In vitro carbonic anhydrase inhibitory effects of the extracts of Satureja cuneifolia. Türk Tarım ve Doğa Bilimleri Dergisi, 8(4), 1146-1150. http://dx.doi.org/10.30910/turkjans.980819
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. Budak, B., & Öztürk Sarıkaya, S. B. (2022). Spirulina: Properties, Benefits and Health-Nutrition Relationship. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 11(4), 1654-1662. http://dx.doi.org/10.37989/gumussagbil.1200004
  • Chhatre, S., Nesari, T., Somani, G., Kanchan, D., & Sathaye, S. (2014). Phytopharmacological overview of Tribulus terrestris. Pharmacognosy reviews, 8(15), 45. http://dx.doi.org/10.4103/0973-7847.125530
  • Çomaklı, V., Aygül, İ., Sağlamtaş, R., Kuzu, M., Demirdağ, R., Akincioğlu, H., ... & Gülçin, İ. (2024). Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: an In Vitro and In Silico Approach. Current Computer-aided Drug Design, 20(5), 441-451. http://dx.doi.org/10.2174/1573409919666230518151414
  • Çomaklı, V., Sağlamtaş, R., Kuzu, M., Karagöz, Y., Aydın, T., & Demirdağ, R. (2023). Enzyme Inhibition and Antioxidant Activities of Asparagus officinalis L. and Analysis of Its Phytochemical Content by LC/MS/MS. Chemistry & Biodiversity, 20, e202201231, 1-10. http://dx.doi.org/10.1002/cbdv.202201231v
  • Durmaz, L., Gulçin, İ., Taslimi, P., & Tüzün, B. (2023). Isofraxidin: Antioxidant, Anti‐carbonic Anhydrase, Anti‐cholinesterase, Anti‐diabetic, and in Silico Properties. ChemistrySelect, 8(34), e202300170. http://dx.doi.org/10.1002/slct.202300170
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95. http://dx.doi.org/10.1016/0006-2952(61)90145-9
  • Khan, S., Kabir, H., Jalees, F., Asif, M., & Naquvi, K. J. (2011). Antihyperlipidemic potential of fruits of Tribulus terrestris linn. IJBR, 1, 98-101. http://dx.doi.org/10.7439/ijbr.v2i1.79
  • Korczowska-Łącka, I., Słowikowski, B., Piekut, T., Hurła, M., Banaszek, N., Szymanowicz, O., ... & Dorszewska, J. (2023). Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants, 12(10), 1811. http://dx.doi.org/10.3390/antiox12101811
  • Orhan, I., Şener, B., Choudhary, M. I., & Khalid, A. (2004). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. Journal of ethnopharmacology, 91(1), 57-60. http://dx.doi.org/10.1016/j.jep.2003.11.016
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, 20, e202201250, 1-8. https://doi.org/10.1002/cbdv.202201250
  • Phillips, O. A., Mathew, K. T., & Oriowo, M. A. (2006). Antihypertensive and vasodilator effects of methanolic and aqueous extracts of Tribulus terrestris in rats. Journal of ethnopharmacology, 104(3), 351-355. http://dx.doi.org/10.1016/j.jep.2005.09.027
  • Piao, M., Tu, Y., Zhang, N., Diao, Q., & Bi, Y. (2023). Advances in the Application of Phytogenic Extracts as Antioxidants and Their Potential Mechanisms in Ruminants. Antioxidants, 12(4), 879. http://dx.doi.org/10.3390/antiox12040879
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3
  • Sachett, A., Gallas-Lopes, M., Conterato, G. M. M., Herrmann, A. P., & Piato, A. (2021). Antioxidant activity by FRAP assay: in vitro protocol. Protocols, http://dx.doi.org/10.17504/protocols.io.btqrnmv6
  • Shahid, M., Riaz, M., Talpur, M. M., & Pirzada, T. (2016). Phytopharmacology of Tribulus terrestris. Journal of biological regulators and homeostatic agents, 30(3), 785-788.
  • Singh, S., Nair, V., & Gupta, Y. K. (2012). Evaluation of the aphrodisiac activity of Tribulus terrestris Linn. İn sexually sluggish male albino rats. Journal of Pharmacology and Pharmacotherapeutics, 3(1), 43-47. http://dx.doi.org/10.4103/0976-500X.92512
  • Song, X., Wang, T., Guo, L., Jin, Y., Wang, J., Yin, G., ... & Zeng, L. (2020). In Vitro and In Vivo Anti-AChE and antioxidative effects of schisandra chinensis extract: a potential candidate for Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine, 2020, 2804849, 1-10. http://dx.doi.org/10.1155/2020/2804849
  • Taşkın, T., Kahvecioğlu, D., Türkoğlu, E. A., Doğan, A., & Kuzu M (2022). In vitro biological activities of different extracts from alcea dissecta. Clinical and Experimental Health Sciences, 12(1), 53-60. http://dx.doi.org/10.33808/clinexphealthsci.787845
  • Tian, C., Chang, Y., Zhang, Z., Wang, H., Xiao, S., Cui, C., & Liu, M. (2019). Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 5(8), e02234. http://dx.doi.org/10.1016/j.heliyon.2019.e02234
  • Tilwari, A., Shukla, N. P., & Devi, P. U. (2011). Effect of five medicinal plants used in Indian system of medicines on immune function in Wistar rats. African Journal of Biotechnology, 10(73), 16637-16645. http://dx.doi.org/10.5897/AJB10.2168
  • Topal, M., & Gulcin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417. http://dx.doi.org/10.1016/j.bcab.2022.102417
  • Uysal, S., Senkardes, I., Jekő, J., Cziáky, Z., & Zengin, G. (2023). Chemical characterization and pharmacological profile of Tribulus terrestris extracts: A novel source of cosmeceuticals and pharmaceuticals. Biochemical Systematics and Ecology, 107, 104600. http://dx.doi.org/10.1016/j.bse.2023.104600
  • Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of food science and technology, 56, 4757-4774. http://dx.doi.org/10.1007/s13197-019-03952-x
  • Zheleva-Dimitrova, D., Obreshkova, D., & Nedialkov, P. (2012). Antioxidant activity of Tribulus terrestris-a natural product in infertility therapy. International journal of pharmacy and pharmaceutical sciences, 4(4), 508-511. http://dx.doi.org/10.1016/J.CLL.2006.06.007

Tribulus Terrestris Bitkisinin Farklı Ekstraktlarının Antioksidan ve Bazı Biyokimyasal Özelliklerinin Belirlenmesi

Year 2024, Volume: 4 Issue: 1, 694 - 708, 25.04.2024

Abstract

Amaç: Bu çalışmada demir Tribulus terrestris (demir diken) bitkisinden elde edilen farklı ekstraktların (petrol eteri, kloroform, metanol, etanol) antioksidan ve toplam fenolik madde miktarını belirlendi. Gereç ve Yöntem: Ekstraktların antioksidan aktiviteleri CUPRAC, FRAP, DPPH ve ABTS yöntemleriyle incelendi. Bunun yanında asetilkolin esteraz (AChE) ve bütirilkolin esteraz (BChE) aktiviteleri üzerine etkileri in vitro olarak değerlendirildi. Bulgular: Elde edilen bulgulara göre toplam fenolik madde miktarı en fazla olan ekstraktın metanol ekstraktı olduğu görüldü (63,59±4,33 μg gallik asit/mg ekstrakt). CUPRAC indirgeme kapasitesi bakımından standart antioksidanlara kıyasla düşük olmakla birlikte ekstraktlar arasında en güçlü etkiye metanol ekstraktının olduğu belirlendi. FRAP yöntemine göre yine metanol ekstraktı 1,47 μmol Fe2+/mg ekstrakt değeri ile en yüksek indirgeme kapasitesine sahipti. Benzer sonuçlar radikal giderme etkilerinde de görüldü. Hem DPPH hem de ABTS yöntemlerine göre radikal giderme kapasitesi en yüksek olan metanol ekstraktı idi. DPPH yöntemine göre 24,39 μg/mL IC50 değeri ile, ABTS yöntemine göre ise 0,47 μg/ μg ekstrakt değerleri ile bu etkiyi gösterdi. Enzim inhibisyon sonuçlarına bakıldığında AChE enzimi için 17,29 μg/mL, BChE için 18,23 μg/mL IC50 değeri ile en güçlü inhibisyon etkisinin yine metanol ekstraktına sahip olduğu görüldü. Sonuç: Elde edilen sonuçlara göre demir diken bitkisinden elde edilen ekstraktların antioksidan etki gösterdiği, AChE ve BChE enzim aktiviteleri üzerine gösterdiği inhibisyon etkisi ile Alzheimer hastalığı tedavisinde bir seçenek olabileceği noktasında ön bilgiler elde edilmiş oldu.

Supporting Institution

Karabük Üniversitesi

Project Number

KBÜBAP-22-YL-016

Thanks

Yapılan çalışma Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından KBÜBAP-22-YL-016 numaralı proje kapsamında desteklenmiştir.

References

  • Abbas, M. W., Hussain, M., Akhtar, S., Ismail, T., Qamar, M., Shafiq, Z., & Esatbeyoglu, T. (2022). Bioactive compounds, antioxidant, anti-inflammatory, anti-cancer, and toxicity assessment of Tribulus terrestris—in vitro and in vivo studies. Antioxidants, 11(6), 1160. http://dx.doi.org/10.3390/antiox11061160
  • Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions, 174(1), 27-37. http://dx.doi.org/10.1016/j.cbi.2008.05.003
  • Akyol, H., & Kuzu, M. (2017). In vitro effects of some heavy metal ions on cytosolic thioredoxin reductase purified from rainbow trout gill tissues. Fresenius Environmental Bulletin, 26, 4677-4683.
  • Amin, A. M. R., Lotfy, M., Shafiullah, M., & Adeghate, E. (2006). The protective effect of Tribulus terrestris in diabetes. Annals of the New York Academy of Sciences, 1084(1), 391-401. http://dx.doi.org/10.1196/annals.1372.005
  • Amorati, R., & Valgimigli, L. (2018). Methods to measure the antioxidant activity of phytochemicals and plant extracts. Journal of Agricultural and Food Chemistry, 66(13), 3324-3329. http://dx.doi.org/10.1021/acs.jafc.8b01079
  • Anand, R., Patnaik, G. K., Kulshreshtha, D. K., & Dhawan, B. N. (1994). Activity of certain fractions of Tribulus terrestris fruits against experimentally induced urolithiasis in rats. Indian journal of experimental biology, 32(8), 548-552. https://europepmc.org/article/med/7959935
  • Asaduzzaman, M., Uddin, M. J., Kader, M. A., Alam, A. H. M. K., Rahman, A. A., Rashid, M., ... & Sadik, G. (2014). In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer's disease. Psychogeriatrics, 14(1), 1-10. http://dx.doi.org/10.1111/psyg.12031
  • Aydın, F. G., Türkoğlu, E. A., Kuzu, M., & Taşkın, T. (2021). In vitro carbonic anhydrase inhibitory effects of the extracts of Satureja cuneifolia. Türk Tarım ve Doğa Bilimleri Dergisi, 8(4), 1146-1150. http://dx.doi.org/10.30910/turkjans.980819
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. Budak, B., & Öztürk Sarıkaya, S. B. (2022). Spirulina: Properties, Benefits and Health-Nutrition Relationship. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 11(4), 1654-1662. http://dx.doi.org/10.37989/gumussagbil.1200004
  • Chhatre, S., Nesari, T., Somani, G., Kanchan, D., & Sathaye, S. (2014). Phytopharmacological overview of Tribulus terrestris. Pharmacognosy reviews, 8(15), 45. http://dx.doi.org/10.4103/0973-7847.125530
  • Çomaklı, V., Aygül, İ., Sağlamtaş, R., Kuzu, M., Demirdağ, R., Akincioğlu, H., ... & Gülçin, İ. (2024). Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: an In Vitro and In Silico Approach. Current Computer-aided Drug Design, 20(5), 441-451. http://dx.doi.org/10.2174/1573409919666230518151414
  • Çomaklı, V., Sağlamtaş, R., Kuzu, M., Karagöz, Y., Aydın, T., & Demirdağ, R. (2023). Enzyme Inhibition and Antioxidant Activities of Asparagus officinalis L. and Analysis of Its Phytochemical Content by LC/MS/MS. Chemistry & Biodiversity, 20, e202201231, 1-10. http://dx.doi.org/10.1002/cbdv.202201231v
  • Durmaz, L., Gulçin, İ., Taslimi, P., & Tüzün, B. (2023). Isofraxidin: Antioxidant, Anti‐carbonic Anhydrase, Anti‐cholinesterase, Anti‐diabetic, and in Silico Properties. ChemistrySelect, 8(34), e202300170. http://dx.doi.org/10.1002/slct.202300170
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95. http://dx.doi.org/10.1016/0006-2952(61)90145-9
  • Khan, S., Kabir, H., Jalees, F., Asif, M., & Naquvi, K. J. (2011). Antihyperlipidemic potential of fruits of Tribulus terrestris linn. IJBR, 1, 98-101. http://dx.doi.org/10.7439/ijbr.v2i1.79
  • Korczowska-Łącka, I., Słowikowski, B., Piekut, T., Hurła, M., Banaszek, N., Szymanowicz, O., ... & Dorszewska, J. (2023). Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants, 12(10), 1811. http://dx.doi.org/10.3390/antiox12101811
  • Orhan, I., Şener, B., Choudhary, M. I., & Khalid, A. (2004). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. Journal of ethnopharmacology, 91(1), 57-60. http://dx.doi.org/10.1016/j.jep.2003.11.016
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, 20, e202201250, 1-8. https://doi.org/10.1002/cbdv.202201250
  • Phillips, O. A., Mathew, K. T., & Oriowo, M. A. (2006). Antihypertensive and vasodilator effects of methanolic and aqueous extracts of Tribulus terrestris in rats. Journal of ethnopharmacology, 104(3), 351-355. http://dx.doi.org/10.1016/j.jep.2005.09.027
  • Piao, M., Tu, Y., Zhang, N., Diao, Q., & Bi, Y. (2023). Advances in the Application of Phytogenic Extracts as Antioxidants and Their Potential Mechanisms in Ruminants. Antioxidants, 12(4), 879. http://dx.doi.org/10.3390/antiox12040879
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3
  • Sachett, A., Gallas-Lopes, M., Conterato, G. M. M., Herrmann, A. P., & Piato, A. (2021). Antioxidant activity by FRAP assay: in vitro protocol. Protocols, http://dx.doi.org/10.17504/protocols.io.btqrnmv6
  • Shahid, M., Riaz, M., Talpur, M. M., & Pirzada, T. (2016). Phytopharmacology of Tribulus terrestris. Journal of biological regulators and homeostatic agents, 30(3), 785-788.
  • Singh, S., Nair, V., & Gupta, Y. K. (2012). Evaluation of the aphrodisiac activity of Tribulus terrestris Linn. İn sexually sluggish male albino rats. Journal of Pharmacology and Pharmacotherapeutics, 3(1), 43-47. http://dx.doi.org/10.4103/0976-500X.92512
  • Song, X., Wang, T., Guo, L., Jin, Y., Wang, J., Yin, G., ... & Zeng, L. (2020). In Vitro and In Vivo Anti-AChE and antioxidative effects of schisandra chinensis extract: a potential candidate for Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine, 2020, 2804849, 1-10. http://dx.doi.org/10.1155/2020/2804849
  • Taşkın, T., Kahvecioğlu, D., Türkoğlu, E. A., Doğan, A., & Kuzu M (2022). In vitro biological activities of different extracts from alcea dissecta. Clinical and Experimental Health Sciences, 12(1), 53-60. http://dx.doi.org/10.33808/clinexphealthsci.787845
  • Tian, C., Chang, Y., Zhang, Z., Wang, H., Xiao, S., Cui, C., & Liu, M. (2019). Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 5(8), e02234. http://dx.doi.org/10.1016/j.heliyon.2019.e02234
  • Tilwari, A., Shukla, N. P., & Devi, P. U. (2011). Effect of five medicinal plants used in Indian system of medicines on immune function in Wistar rats. African Journal of Biotechnology, 10(73), 16637-16645. http://dx.doi.org/10.5897/AJB10.2168
  • Topal, M., & Gulcin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417. http://dx.doi.org/10.1016/j.bcab.2022.102417
  • Uysal, S., Senkardes, I., Jekő, J., Cziáky, Z., & Zengin, G. (2023). Chemical characterization and pharmacological profile of Tribulus terrestris extracts: A novel source of cosmeceuticals and pharmaceuticals. Biochemical Systematics and Ecology, 107, 104600. http://dx.doi.org/10.1016/j.bse.2023.104600
  • Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of food science and technology, 56, 4757-4774. http://dx.doi.org/10.1007/s13197-019-03952-x
  • Zheleva-Dimitrova, D., Obreshkova, D., & Nedialkov, P. (2012). Antioxidant activity of Tribulus terrestris-a natural product in infertility therapy. International journal of pharmacy and pharmaceutical sciences, 4(4), 508-511. http://dx.doi.org/10.1016/J.CLL.2006.06.007
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Nutrition and Dietetics (Other)
Journal Section Research Articles
Authors

Nazrın Navrozlu This is me 0009-0003-5341-9948

Müslüm Kuzu 0000-0002-1375-7673

Project Number KBÜBAP-22-YL-016
Publication Date April 25, 2024
Submission Date December 18, 2023
Acceptance Date January 24, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Navrozlu, N., & Kuzu, M. (2024). Tribulus Terrestris Bitkisinin Farklı Ekstraktlarının Antioksidan ve Bazı Biyokimyasal Özelliklerinin Belirlenmesi. Unika Sağlık Bilimleri Dergisi, 4(1), 694-708.