Research Article
BibTex RIS Cite

Biogas Production from Cattle Manure Together with Greenhouse Harvesting Wastes and Modelling of Anaerobic Co-Digestion

Year 2018, Volume: 28 Issue: 1, 62 - 69, 30.03.2018
https://doi.org/10.29133/yyutbd.346849

Abstract

The aim of this study is to determine the optimum organic loading
and waste mixing ratios to obtain the highest biogas yield for the anaerobic
digestion of tomato and pepper harvesting wastes together with cattle manure.
This study was carried out at 5 and 10% of organic loadings. Tomato and pepper
harvesting wastes were each mixed with cattle manure in the ratios of 15%, 30%,
45%, 60%, 75% and 90%. As a result, the highest biogas yield was obtained in
the mixture of 60% tomato harvesting wastes with 40% of cattle manure at 5% of
organic loading. Simulation ability of each kinetic model for experimental data
was determined. Results of the highest biogas yields of 5% and 10% organic
loading samples were modelled by using different kinetic models (Gompertz,
Cone, and First Order) and model parameters were calculated.

References

  • Ahring, B.K., Sandberg, M.,Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol, 43: 559 Alvarez, R. and Lıden, G., (2008). Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano. WasteManagement, 28: 1933-1940. APHA, (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Arıkan, O.A., Mulbry, W., Lansing, S. (2015). Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure. Waste Management, 43, 108-113 Callaghan, F.J., Wase, D.A., Thayanıthy, K. and Forster, C.F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy, 27: 71-77. Carrere, H., B. Sialve, N. Bernet. (2009) Improving Pig Manure into Biogas by Thermal and Thermo-Chemical Pretreatments. Bioresource Technol. 100, 3690-3694. Defra. (2009). Anaerobic Digestion - Shared Goals. Department for Environment, Food and Rural Affairs, UK Di Maria F., Barratta M., (2015). Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway. Waste Management 43 (2015) 130-136. Kepp, U., Machenbach, I., Weisz, N., Solheim, O.E. (2000). Enhanced stabilisation of sewage sludge through thermal hydrolysis - three years of experiencewith full scale plant. Water Science and Technology, 42(9), 89-96. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31, 1737-1744. Lay, J.J., Li, Y., Noike, T. (1997). Influence ofpHand moisture content on the methane production in high-solids sludge digestion, Water Research 31, 1518-1524. Lehtomaki, A., Huttunen, S., Rintala, J.A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling, 51, 591-609. Lindmark, J., Eriksson, P., Thorin, E. (2014). The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste. Waste Management, 34(8), 1391-1397.: Llabres-Luengo, P., and J. Mata-Alvarez. (1987). Kinetic study of the anaerobic digestion of straw-pig manure mixtures. Biomass, 14(2): 129-142. Lowry, O.H., Rosebrough, N.J. Fau, A.L., Randall, R.J. (1951). Protein measurement with the Folin reagent, J. of Bio. Chem., 193, 265-275. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428., Peces, M., Astals, S., Mata-Alvarez, J. (2015). Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates. Waste Management, 46, 189-196. Pitt, R. E., Cross, T. L., Pell, A. N., Schofield, P., and Doane, P. H. (1999). Use of in vitro gas production models in ruminal kinetics^^a^h. Biosci. 159:145-163. Reichert, P., J. Ruchti, and W. Simon. (1998). Aquasim 2.0. Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Duebendorf, Switzerland. Saev M., Koumanova B. and Sımeonov I.V. (2009). Anaerobic co-digestion of wasted tomatoes and cattle dung for biogas production. J. of the Univ. of Chemical Technology and Metallurgy, 44, 1: 55-60. Umetsu, K., Yamazakı, S., Kıshımoto, T., Takahashı, J., Shıbata, Y., Zhang, C., Mısakı, T., Hamamoto, O., Ihara, I. and Komıyama, M., (2006). Anaerobic co-digestion of dairy manure and sugar beets. International Congress Series 1293, 307-310. Us, E., Perendeci, A. (2012). Improvement of Methane Production from Greenhouse Residues: Optimization of Thermal and H2SO4 Pretreatment Process by Experimental Design. Chemical Engineering Journal, 181-182, 120-131. Xie, S., P.G. Lawlor, J.P. Frost, Z. Hu, and X. Zhan. (2011). Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of pig manure and grass silage. Bioresource Technology, 102(10): 5728-5733.

Büyükbaş Hayvan Atıkları ile Sera Hasat Atıklarından Biyogaz Üretimi ve Birlikte Anaerobik Parçalanma Prosesinin Modellenmesi

Year 2018, Volume: 28 Issue: 1, 62 - 69, 30.03.2018
https://doi.org/10.29133/yyutbd.346849

Abstract

Bu çalışmanın amacı kök, gövde, yaprak ve meyve içeren domates ve
biber bitkisi hasat atıklarının sığır gübresi ile birlikte anaerobik
parçalanmasında en yüksek biyogaz veriminin elde edileceği en uygun organik
yükleme ve atık karışım oranlarının saptanmasıdır. Çalışma %5 ve %10 olmak
üzere 2 farklı organik yükleme miktarında gerçekleştirilmiştir. Sığır gübresi
içerisine domates ve biber hasat atıkları ayrı ayrı olmak üzere %15, %30, %45,
%60, %75 ve %90 oranlarında karıştırılmıştır. Çalışma sonucunda en yüksek
biyogaz verimi %5 organik yükleme miktarında %40 sığır gübresi ile %60 domates
hasat atıkları karışım oranında elde edilmiştir. %5 ve %10 organik yükleme
miktarları için en yüksek biyogaz veriminin elde edildiği karışım oranlarına
ait sonuçlar farklı kinetik modellerle (Gompertz, Cone, ve Birinci derece
model) modellenmiş, kinetik modellerin deneysel verileri temsil etme yeteneği
tespit edilmiş ve model parametreleri hesaplanmıştır.

References

  • Ahring, B.K., Sandberg, M.,Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol, 43: 559 Alvarez, R. and Lıden, G., (2008). Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano. WasteManagement, 28: 1933-1940. APHA, (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Arıkan, O.A., Mulbry, W., Lansing, S. (2015). Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure. Waste Management, 43, 108-113 Callaghan, F.J., Wase, D.A., Thayanıthy, K. and Forster, C.F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy, 27: 71-77. Carrere, H., B. Sialve, N. Bernet. (2009) Improving Pig Manure into Biogas by Thermal and Thermo-Chemical Pretreatments. Bioresource Technol. 100, 3690-3694. Defra. (2009). Anaerobic Digestion - Shared Goals. Department for Environment, Food and Rural Affairs, UK Di Maria F., Barratta M., (2015). Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway. Waste Management 43 (2015) 130-136. Kepp, U., Machenbach, I., Weisz, N., Solheim, O.E. (2000). Enhanced stabilisation of sewage sludge through thermal hydrolysis - three years of experiencewith full scale plant. Water Science and Technology, 42(9), 89-96. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31, 1737-1744. Lay, J.J., Li, Y., Noike, T. (1997). Influence ofpHand moisture content on the methane production in high-solids sludge digestion, Water Research 31, 1518-1524. Lehtomaki, A., Huttunen, S., Rintala, J.A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling, 51, 591-609. Lindmark, J., Eriksson, P., Thorin, E. (2014). The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste. Waste Management, 34(8), 1391-1397.: Llabres-Luengo, P., and J. Mata-Alvarez. (1987). Kinetic study of the anaerobic digestion of straw-pig manure mixtures. Biomass, 14(2): 129-142. Lowry, O.H., Rosebrough, N.J. Fau, A.L., Randall, R.J. (1951). Protein measurement with the Folin reagent, J. of Bio. Chem., 193, 265-275. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428., Peces, M., Astals, S., Mata-Alvarez, J. (2015). Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates. Waste Management, 46, 189-196. Pitt, R. E., Cross, T. L., Pell, A. N., Schofield, P., and Doane, P. H. (1999). Use of in vitro gas production models in ruminal kinetics^^a^h. Biosci. 159:145-163. Reichert, P., J. Ruchti, and W. Simon. (1998). Aquasim 2.0. Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Duebendorf, Switzerland. Saev M., Koumanova B. and Sımeonov I.V. (2009). Anaerobic co-digestion of wasted tomatoes and cattle dung for biogas production. J. of the Univ. of Chemical Technology and Metallurgy, 44, 1: 55-60. Umetsu, K., Yamazakı, S., Kıshımoto, T., Takahashı, J., Shıbata, Y., Zhang, C., Mısakı, T., Hamamoto, O., Ihara, I. and Komıyama, M., (2006). Anaerobic co-digestion of dairy manure and sugar beets. International Congress Series 1293, 307-310. Us, E., Perendeci, A. (2012). Improvement of Methane Production from Greenhouse Residues: Optimization of Thermal and H2SO4 Pretreatment Process by Experimental Design. Chemical Engineering Journal, 181-182, 120-131. Xie, S., P.G. Lawlor, J.P. Frost, Z. Hu, and X. Zhan. (2011). Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of pig manure and grass silage. Bioresource Technology, 102(10): 5728-5733.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih Yılmaz This is me

Elçin Kökdemir Ünşar This is me

H. Emre Akman

Nuriye Altınay Perendeci

Osman Yaldız

Publication Date March 30, 2018
Acceptance Date March 17, 2018
Published in Issue Year 2018 Volume: 28 Issue: 1

Cite

APA Yılmaz, F., Kökdemir Ünşar, E., Akman, H. E., Perendeci, N. A., et al. (2018). Büyükbaş Hayvan Atıkları ile Sera Hasat Atıklarından Biyogaz Üretimi ve Birlikte Anaerobik Parçalanma Prosesinin Modellenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 62-69. https://doi.org/10.29133/yyutbd.346849
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.