BibTex RIS Kaynak Göster

Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi

Yıl 2018, Cilt: 22 Sayı: 2, 754 - 759, 15.08.2018
https://doi.org/10.19113/sdufbed.41518

Öz

Bu makalede, kısmi diferansiyel denklem kullanılarak modellenen bir epidemik model çalışılmıştır. Hanta virüs modeli de denilen bu modelde tüm fare popülasyonu Ms ve Mi olarak iki sınıfa ayrılmıştır.  M= Ms + Mi şeklinde toplam fare popülasyonunu veren, Fisher-Kolmogorov kısmi diferansiyel denkleminin genel çözümü için Lie simetri analizinden faydalanılmıştır.

Kaynakça

  • [1] Abramson, G., and Kenkre, V. M. 2002. Spatiotemporal Patterns in the Hantavirus Infection. Physical Review E, 66.1, 011912.
  • [2] Abramson, G., Kenkre, V. M., Yates, T. L., Parmenter, R. R. 2003. Traveling Waves of Infection in the Hantavirus Epidemics. Bulletin of mathematical biology, 65(3), 519-534 .
  • [3] Allen, L. JS., Michel, L., and Carleton J. P. 2003. The Dynamics of Two Viral Infections in a Single Host Population with Applications to Hantavirus. Mathematical biosciences 186.2, 191-21 .
  • [4] Chen, M., Clemence, D. P. 2006. Analysis of and Numerical Schemes for a Mouse Population Model in Hantavirus Epidemics. Journal of Difference Equations and Applications, 12(9), 887-899 .
  • [5] Allen, L. JS., Robert K. M., Colleen B. J. 2006. Mathematical Models for Hantavirus Infection in Rodents. Bulletin of mathematical biology 68.3, 511-524.
  • [6] Rida, S. Z., El Radi, A. A., Arafa, A., Khalil, M. 2012. The Effect of the Environmental Parameter on the Hantavirus Infection through a Fractional-order SI model. International Journal of Basic and Applied Sciences, 1(2), 88-99.
  • [7] Ruan, S., Jianhong W. 2009. Modeling spatial Spread of Communicable Diseases Involving Animal Hosts. Spatial ecology, 293-316.
  • [8] Karadem, Z.G., Ongun, M.Y.. 2016. Logistic Differential Equation Obtained from Hanta-virus Model. Suleyman Demirel University Journal of Science (e-Journal), 11(1), 82-91.
  • [9] Bluman G.W., Kumei S. 1989. Symmetries and Differential Equations. New York, Springer-Verlag.
  • [10] Cohen, A., 1911. An Inroduction To The Lie Theory Of One-Parameter Groups With Applications To The Solutions Of Differantial Equations. D.C. Heath Co., Publishers,Boston, New York, Chicago.
  • [11] Ibragimov, N. H. 2001. Selected Works. Vol. 1, 2. Karlskrona, Sweden: Alga Publications, Blekinge Institute of Technology.
  • [12] Oliver, P.J. 1986. Applications of Lie Groups to Differential Equations, Springer-Verlag, New York.
  • [13] Ovsiannikov, L.V., 1982. Group Analysis of Differential Equations. Academic Press, New York.
  • [14] Page, J.M. 1897. Ordinary Differantial Equations An Elementary Text Book With in Introduction To Lie's Theory Of The Group Of One Parameter. Macmillan And Co. Limited, London.
  • [15] Bluman, G. W., Stephen C. A. 2002. Symmetry and Integration Methods for Differential Equations. No. 154, Springer, Verlag New York,Inc.
  • [16] Hyden, P.E, 2000. Symmetry Methods for Differential Equations (A Beginner's Guide). Cambridge Texts In Applied Mathematics.
  • [17] Clarksonz, P. A., Elizabeth, L. M. 1994. Symmetry Reductions and Exact Solutions of a Class of Nonlinear Heat Equations. Physica D: Nonlinear Phenomena 70.3, 250-288.
  • [18] Gbetoula, M.F.K. 2011. Symmetry Analysis of Fisher’s Equation. University of KwaZulu-Natal, South Africa, 3-21 .
  • [19] Verna, A., Ram, J., Mehmet, K. 2014. Analytic and Numerical Solutions of Nonlinear Diffusion Equations Via Symmetry Reductions. Advances in Difference Equations (2014), (1-13).
  • [20] Mohamed, Y.F. 2015. Mathematical Modeling Of The Spread Of Hantavirus Infection. Diss, Universiti Sains, Malaysia. Anthony Z. 1979. "Explicit solutions of Fisher's equation for a special wave speed." Bulletin of Mathematical Biology 41.6 :835-840.
  • [21] Kaushal, R. S., Ranjit K., and Awadhesh P. 2006. "On the exact solutions of nonlinear diffusion-reaction equations with quadratic and cubic nonlinearities."Pramana 67.2, 249-256.
  • [22] Ablowitz, M. J., and Anthony Z. 1979. Explicit Solutions of Fisher's Equation for a Special Wave Speed. Bulletin of Mathematical Biology, 41.6 :835-840.
  • [23] Kaushal, R. S., Ranjit, K., Awadhesh, P. 2006. On the Exact Solutions of Nonlinear Diffusion-Reaction Equations with Quadratic and Cubic Nonlinearities. Pramana, 67.2, 249-256.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Mehmet Kocabıyık

Mevlüde Yakıt Ongun

Yayımlanma Tarihi 15 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 2

Kaynak Göster

APA Kocabıyık, M., & Yakıt Ongun, M. (2018). Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 754-759. https://doi.org/10.19113/sdufbed.41518
AMA Kocabıyık M, Yakıt Ongun M. Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2018;22(2):754-759. doi:10.19113/sdufbed.41518
Chicago Kocabıyık, Mehmet, ve Mevlüde Yakıt Ongun. “Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 2 (Ağustos 2018): 754-59. https://doi.org/10.19113/sdufbed.41518.
EndNote Kocabıyık M, Yakıt Ongun M (01 Ağustos 2018) Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 754–759.
IEEE M. Kocabıyık ve M. Yakıt Ongun, “Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, sy. 2, ss. 754–759, 2018, doi: 10.19113/sdufbed.41518.
ISNAD Kocabıyık, Mehmet - Yakıt Ongun, Mevlüde. “Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (Ağustos 2018), 754-759. https://doi.org/10.19113/sdufbed.41518.
JAMA Kocabıyık M, Yakıt Ongun M. Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:754–759.
MLA Kocabıyık, Mehmet ve Mevlüde Yakıt Ongun. “Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 2, 2018, ss. 754-9, doi:10.19113/sdufbed.41518.
Vancouver Kocabıyık M, Yakıt Ongun M. Hanta Virüs Modelinden Elde Edilen Fisher-Kolmogorov Denkleminin Lie Simetri Analizi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(2):754-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.