Araştırma Makalesi
BibTex RIS Kaynak Göster

BLDC Motor Design and Application for Light Electric Vehicle

Yıl 2021, Cilt: 21 Sayı: 2, 326 - 336, 30.04.2021
https://doi.org/10.35414/akufemubid.889877

Öz

The popularity of electrical vehicles is increasing rapidly in recent years due to energy generation/consumption ratio, transportation costs, decrease in fossil fuel reserves with increasing population as well as the environmental damage caused by fossil fuels. Therefore, Brushless Direct Current (BLDC) Motor design was actualized in the present study for use in electrical vehicles expected to replace the transportation vehicles of today. Firstly, analytical design of the targeted motor was completed after which the Finite Elements Method was used for modelling. Ansys Maxwell Program is one of the package programs used in FEM. This study was carried out with Ansys Maxwell Electromagnetic Suite version 17.2 . The prototype motor was manufactured after reaching the desired results with Finite Elements Method and experimental studies commenced with the experiment setup prepared in the laboratory environment. Experimental results were compared with electromagnetic results. Finally, the prototype motor was mounted on the ElektroGOP vehicle and it was observed to work without problem at the expected performance during the test drives.

Destekleyen Kurum

Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2015/105

Teşekkür

This study was supported by the Scientific Research Projects of Gaziosmanpasa University with project number 2015/105.

Kaynakça

  • Akın, F., 2019. Electric vehicles developed for external-rotor brushless dc motor design and analysis. M.Sc. Thesis, Tokat Gaziosmanpasa University Graduate School of Natural And Applied Sciences, Tokat, 84.
  • Aydoğdu, Ö., 2011. An effective real coded GA based fuzzy controller for speed control of a BLDC motor without speed sensor. Turkish Journal of Electrical Engineering and Computer Sciences, 19 (3), 413-430.
  • Boldea, İ. and Nasar, S.A., 2002. The induction machines desing handbook -Second edition. Taylor and Francis Group, United States of America, 490-640.
  • Fukami, T., Motoki, K., Kirihata, R., Shima, K., Koyama, M., Mori, T. and Nakano, M., 2017. An electromagnet-assisted ferrite magnet motor, IEEE Transactions on Magnetics, 53 (11), 1-4.
  • Çelikel, R., and Aydoğmuş, Ö., 2019. A torque ripple minimization method for brushless dc motor in high speed applications. Journal of Engineering Research, 7 (3), 200-214.
  • Gökce, C., 2005. Modeling and simulation of a series parallel hybrid electrical vehicle. Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 64.
  • Grunditz, E. and Jansson, E., 2009. Modelling and simulation of a hybrid electric vehicle for shell ecomarathon and an electric gokart, M.Sc. Thesis, Chalmers University of Technology Electric Power Engineering, Göteborg, 10-12.
  • Hanselman, D.C, 1994. Brushless permanent-magnet motor design. I, Mc Graw- Hill, ABD, 61-101.
  • Hori, Y., 2004. Future vehicle driven by electricity and control-research on four-wheel- motored, IEEE Transactions on Industrial Electronics, 51 (5), 1-14.
  • Kim, S., Choi, J. and Lee, J., 2003. Magnet shape optimization for high performance single-phase line start synchronous motor. Journal of Applied Physics, 93 (10), 8695-8697
  • Krause, P., Wasynczuk, O. and Sudhoff, S.D.,2002. Analysis of electrıc machinery and drive systems. 2nd ed., IEEE Press, USA, 67-106.
  • Li, Y., Bobba, D., and Sarlioglu, B., 2018. Design and optimization of a novel dual-rotor hybrid pm machine for traction application. IEEE Transactions on Industrial Electronics, 65 (2), 1762-1771.
  • Ogawa, T., Takahashi, T., Takemoto, M., Ogasawara, S., and Daikoku, A., 2017. The examination of pole geometry of consequent pole type ferrite PM axial gap motor with field winding. In Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1-7.
  • Raminosoa, T., El-Refaie, A. M., Torrey, D. A., Grace, K., Pan, D., Grubic, S., and Huh, K. K. 2017. Test results for a high temperature non- permanent-magnet traction motor. IEEE Transactions on Industry Applications, 53 (4), 3496-3504.
  • Skvarenina, T. L., 2002. The power electronic handbook. I, CRC Press LLC, New York, 78-100.
  • Tur, O., Tuncay, R.N. and Ucarol, H., 2005. Basics of electric vehicle technology and a design study on a series hybrid electric vehicle powertrain. ELECO 2005 4th International Conference on Electrical and Electronics Engineering, Bursa.
  • Tur, O., Uçarol, H., Özsu, E., Demirci, M., Solak, Y., Elcik, E., Dalkılıç, Ö. and Özatay, E., 2007. Sizing, design and prototyping of an electric drive system for a split drive hybrid electric vehicle, International Electric Machines and Drives Conference (IEMDC) 2007, Antalya.
  • Tutelea, L. and I. Boldea, I., 2007. Optimal design of residential brushless d.c. permanent magnet motors with FEM validation, Aegean Conference on Electric Machines, Power Electronics and Electromotion (ACEMP'07), 435-439.
  • Ustun, O., Yilmaz, M., Gokce, C., Karakaya, U. and Tuncay, R., 2009. Energy Management Method for Solar Race Car Design and Application, IEEE International Electric Machines and Drives Conference, 804-811.
  • Uçarol, H., 2003, Hybrid electric vehicle, M.Sc. Thesis, Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 89.
  • Xue, X. D., Cheng, K.W.E. and Cheung, N.C., 2008. Selection Of Electric Motor Drives For Electric Vehicles, Australasian Universities Power Engineering Conference, Hong Kong, 170-175.
  • Yılmaz, M., Tuncay, R.N. and Ustub, O, 2004. A wavelet study of sensorless control of brushless DC motor through rapid prototyping approach, Proceedings of the IEEE International Conference on Mechatronics, ICM '04, İstanbul, Turkey.
  • Ying, L. and Ertugrul, N., 1999. The Dynamic Simulation of the Three-Phase Brushless Permanent Magnet AC Motor Drives with LabVIEW, Australasian Universities Power Engineering Conference AUPEC'99, Darwin, 11-16.
  • Zarko, D., Ban, D. and Lipo, T.A., 2007. Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping, IEEE Transactions on Magnetics, 44 (1), 52-64

Hafif Elektrikli Araç için FDAM Tasarım ve Uygulaması

Yıl 2021, Cilt: 21 Sayı: 2, 326 - 336, 30.04.2021
https://doi.org/10.35414/akufemubid.889877

Öz

Son yıllarda artan nüfusla birlikte enerji üretim/tüketim oranı, ulaşım giderleri, fosil yakıt rezervlerinin azalması ve fosil yakıtların çevreye verdikleri zararlar gibi başlıca etkenler sebebiyle elektrikli araçların popülaritesi hızlı bir şekilde artmaktadır. Dolasıyla elektrikli araç ve ekipmanları üzerine yapılan çalışmalar da artmaktadır. Bu çalışmada günümüz ulaşım araçlarının yerini alan elektrikli araçlarda kullanılması hedeflenen Fırçasız Doğru Akım Motor (FDAM) tasarımı gerçekleştirilmiştir. Öncelikle hedeflenen motorun analitik tasarımı yapılarak Sonlu Elemanlar Yöntemi (SEY) ile modellemesi yapılmıştır. Ansys Maxwell Programı SEY'de kullanılan paket programlardan biridir. Bu çalışma Ansys Maxwell Elektromanyetik Suite 17.2 versiyonu ile gerçekleştirilmiştir. SEY ile hedeflenen sonuçlara ulaşıldıktan sonra motorun protorip üretimi gerçekleştirilmiş ve prototip motorun, laboratuvar ortamında hazırlanan deney düzeneği ile deneysel çalışmaları yapılmıştır. Deneysel sonuçlar elektromanyetik sonuçlarla karşılaştırılmıştır. Son olarak prototip motor ElektroGOP aracına monte edilmiş ve sürüş denemelerinde motorun hedeflenen performansta ve sorunsuz şekilde çalıştığı görülmüştür.

Proje Numarası

2015/105

Kaynakça

  • Akın, F., 2019. Electric vehicles developed for external-rotor brushless dc motor design and analysis. M.Sc. Thesis, Tokat Gaziosmanpasa University Graduate School of Natural And Applied Sciences, Tokat, 84.
  • Aydoğdu, Ö., 2011. An effective real coded GA based fuzzy controller for speed control of a BLDC motor without speed sensor. Turkish Journal of Electrical Engineering and Computer Sciences, 19 (3), 413-430.
  • Boldea, İ. and Nasar, S.A., 2002. The induction machines desing handbook -Second edition. Taylor and Francis Group, United States of America, 490-640.
  • Fukami, T., Motoki, K., Kirihata, R., Shima, K., Koyama, M., Mori, T. and Nakano, M., 2017. An electromagnet-assisted ferrite magnet motor, IEEE Transactions on Magnetics, 53 (11), 1-4.
  • Çelikel, R., and Aydoğmuş, Ö., 2019. A torque ripple minimization method for brushless dc motor in high speed applications. Journal of Engineering Research, 7 (3), 200-214.
  • Gökce, C., 2005. Modeling and simulation of a series parallel hybrid electrical vehicle. Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 64.
  • Grunditz, E. and Jansson, E., 2009. Modelling and simulation of a hybrid electric vehicle for shell ecomarathon and an electric gokart, M.Sc. Thesis, Chalmers University of Technology Electric Power Engineering, Göteborg, 10-12.
  • Hanselman, D.C, 1994. Brushless permanent-magnet motor design. I, Mc Graw- Hill, ABD, 61-101.
  • Hori, Y., 2004. Future vehicle driven by electricity and control-research on four-wheel- motored, IEEE Transactions on Industrial Electronics, 51 (5), 1-14.
  • Kim, S., Choi, J. and Lee, J., 2003. Magnet shape optimization for high performance single-phase line start synchronous motor. Journal of Applied Physics, 93 (10), 8695-8697
  • Krause, P., Wasynczuk, O. and Sudhoff, S.D.,2002. Analysis of electrıc machinery and drive systems. 2nd ed., IEEE Press, USA, 67-106.
  • Li, Y., Bobba, D., and Sarlioglu, B., 2018. Design and optimization of a novel dual-rotor hybrid pm machine for traction application. IEEE Transactions on Industrial Electronics, 65 (2), 1762-1771.
  • Ogawa, T., Takahashi, T., Takemoto, M., Ogasawara, S., and Daikoku, A., 2017. The examination of pole geometry of consequent pole type ferrite PM axial gap motor with field winding. In Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1-7.
  • Raminosoa, T., El-Refaie, A. M., Torrey, D. A., Grace, K., Pan, D., Grubic, S., and Huh, K. K. 2017. Test results for a high temperature non- permanent-magnet traction motor. IEEE Transactions on Industry Applications, 53 (4), 3496-3504.
  • Skvarenina, T. L., 2002. The power electronic handbook. I, CRC Press LLC, New York, 78-100.
  • Tur, O., Tuncay, R.N. and Ucarol, H., 2005. Basics of electric vehicle technology and a design study on a series hybrid electric vehicle powertrain. ELECO 2005 4th International Conference on Electrical and Electronics Engineering, Bursa.
  • Tur, O., Uçarol, H., Özsu, E., Demirci, M., Solak, Y., Elcik, E., Dalkılıç, Ö. and Özatay, E., 2007. Sizing, design and prototyping of an electric drive system for a split drive hybrid electric vehicle, International Electric Machines and Drives Conference (IEMDC) 2007, Antalya.
  • Tutelea, L. and I. Boldea, I., 2007. Optimal design of residential brushless d.c. permanent magnet motors with FEM validation, Aegean Conference on Electric Machines, Power Electronics and Electromotion (ACEMP'07), 435-439.
  • Ustun, O., Yilmaz, M., Gokce, C., Karakaya, U. and Tuncay, R., 2009. Energy Management Method for Solar Race Car Design and Application, IEEE International Electric Machines and Drives Conference, 804-811.
  • Uçarol, H., 2003, Hybrid electric vehicle, M.Sc. Thesis, Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 89.
  • Xue, X. D., Cheng, K.W.E. and Cheung, N.C., 2008. Selection Of Electric Motor Drives For Electric Vehicles, Australasian Universities Power Engineering Conference, Hong Kong, 170-175.
  • Yılmaz, M., Tuncay, R.N. and Ustub, O, 2004. A wavelet study of sensorless control of brushless DC motor through rapid prototyping approach, Proceedings of the IEEE International Conference on Mechatronics, ICM '04, İstanbul, Turkey.
  • Ying, L. and Ertugrul, N., 1999. The Dynamic Simulation of the Three-Phase Brushless Permanent Magnet AC Motor Drives with LabVIEW, Australasian Universities Power Engineering Conference AUPEC'99, Darwin, 11-16.
  • Zarko, D., Ban, D. and Lipo, T.A., 2007. Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping, IEEE Transactions on Magnetics, 44 (1), 52-64
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Akar 0000-0003-0164-1451

Mustafa Eker 0000-0003-1085-0968

Fazilet Akın Bu kişi benim 0000-0002-8882-2695

Proje Numarası 2015/105
Yayımlanma Tarihi 30 Nisan 2021
Gönderilme Tarihi 3 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 21 Sayı: 2

Kaynak Göster

APA Akar, M., Eker, M., & Akın, F. (2021). BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(2), 326-336. https://doi.org/10.35414/akufemubid.889877
AMA Akar M, Eker M, Akın F. BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2021;21(2):326-336. doi:10.35414/akufemubid.889877
Chicago Akar, Mehmet, Mustafa Eker, ve Fazilet Akın. “BLDC Motor Design and Application for Light Electric Vehicle”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 2 (Nisan 2021): 326-36. https://doi.org/10.35414/akufemubid.889877.
EndNote Akar M, Eker M, Akın F (01 Nisan 2021) BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 2 326–336.
IEEE M. Akar, M. Eker, ve F. Akın, “BLDC Motor Design and Application for Light Electric Vehicle”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 2, ss. 326–336, 2021, doi: 10.35414/akufemubid.889877.
ISNAD Akar, Mehmet vd. “BLDC Motor Design and Application for Light Electric Vehicle”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/2 (Nisan 2021), 326-336. https://doi.org/10.35414/akufemubid.889877.
JAMA Akar M, Eker M, Akın F. BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:326–336.
MLA Akar, Mehmet vd. “BLDC Motor Design and Application for Light Electric Vehicle”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 2, 2021, ss. 326-3, doi:10.35414/akufemubid.889877.
Vancouver Akar M, Eker M, Akın F. BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(2):326-3.