Araştırma Makalesi
BibTex RIS Kaynak Göster

Potential of Purslane (Portulaca oleracea L.) in Phytoremediation: A Study on the Bioaccumulation and Bio-Transfer of Cadmium, Nickel, and Copper in Contaminated Soils

Yıl 2024, Cilt: 30 Sayı: 2, 284 - 292, 26.03.2024
https://doi.org/10.15832/ankutbd.1346861

Öz

As industrial and agricultural activities intensify and technology rapidly advances, soil pollution has escalated to alarming levels. The increasing contamination of agricultural areas and the crops cultivated therein has emerged as a significant contemporary issue. Phytoremediation, the use of plants to remove pollutants, is a promising method for mitigating soil heavy metal contamination.
This study investigates the bioaccumulation capacity of purslane (Portulaca oleracea L.), a potential phytoremediator, in soils artificially contaminated with cadmium (Cd), nickel (Ni), and copper (Cu). The purslane was cultivated under controlled conditions with varying doses of Cd, Ni, and Cu. After 55 days, the plants were harvested and analysed for heavy metal concentrations in their roots, stems, and leaves. The results demonstrated a direct correlation between environmental heavy metal concentration and plant heavy metal content, with the most significant accumulation occurring in the roots. The leaf chlorophyll content was adversely affected by increased Cd, Ni, and Cu applications. The highest Cu, Ni, and Cd contents were found in the roots at 140 mg kg-1 Cu, 80 mg kg-1 Ni, and 20 mg kg-1 Cd applications, respectively. The bio-transfer coefficient (BTC), a measure of heavy metal transport from the root region to the leaves, was calculated. The BTC values ranged from 0.84-1.09 for Cu, 0.39-0.84 for Ni, and >1 for Cd at the Control and 5 mg Cd kg-1 treatments. These findings suggest that purslane has potential for phytoremediation of heavy metal-contaminated soils, although the bioaccumulation and bio-transfer of heavy metals are dependent on the specific metal and its concentration in the soil. The study also highlights the potential risks associated with the consumption of plants grown in heavy metal-contaminated soils, as heavy metals can accumulate in different plant tissues, potentially entering the food chain.

Kaynakça

  • Alloway B J (Ed.) (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed., pp. 195–210). Environmental Pollution. DOI: https://doi.org/10.1007/978-94-007-4470-7
  • Angulo-Bejarano P I, Puente-Rivera J & Cruz-Ortega R (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 10(4): 635. DOI: https://doi.org/10.3390/plants 10040635
  • Awan S A, Ilyas N, Khan I, Raza M A, Rehman A U, Rizwan M, Rastogi A, Tariq R & Brestic M (2020). Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants 9(7): 878. DOI: 10.3390/plants9070878
  • Baker A J M, McGrath S P, Reeves R D & Smith J A C (2000). Metal hyperaccumulator plants: A review of the ecology and physiology f a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (editors). Phytoremediation of Contaminated Soil and Water. Boca Raton, Florida: CRC Press. pp. 85-107. ISBN: 9780367803148 (Online)
  • Chandra R, Kumar K & Singh J (2004). Impact of anaerobically treated and untreated (raw) distillery effluent irrigation on soil microflora, growth, total chlorophyll and protein contents of Phaseolus aureus L. Journal of Environmental Biology 25(4): 381-385, PMID: 15907064.
  • Dalyan E (2012). The Identification and Characterization of Heavy Metal Stress Responsive Genes in Brassica juncea var. P78. PhD Dissertation. Institute of Natural and Applied Sciences, Istanbul University, Istanbul, Turkey
  • Dunand D V, Epron D, Alaoui-Sossé B & Badot P M (2002). Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science 163(1): 53-58. DOI: https://doi.org/10.1016/S0168-9452(02)00060-2.
  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J & Kynicky J (2017). Oxidative stress and heavy metals in plants. Reviews of Environmental Contamination and Toxicology 245: 129–156. DOI: 10.1007/398_2017_7
  • ISO 11466 International Standard (1995). ISO 11466 International Standard Soil Quality — Extraction of Trace Elements Soluble in Aqua Regia, International Organization for Standardization, Genève, Switzerland Jabeen R, Ahmad A & Iqbal M (2009).
  • Phytoremediation of heavy metals: Physiological and molecular mechanisms. The Botanical Reviews 75(4): 339-364. DOI: https://doi.org/10.1007/s12229-009-9036x
  • Jaime-Pérez N, Kaftan D, Bína D, Bokhari S N H, Shreedhar S & Küpper H (2019). Mechanisms of sublethal copper toxicity damage to the photosynthetic apparatus of Rhodospirillum rubrum. Biochimica et Biophysica Acta (BBA)- Bioenergetics 1860(8): 640–650. DOI: https://doi.org/10.1016/j.bbabio.2019.06.004
  • Kabata A, Pendias H (2001). Trace elements in soil and plants. FL: CRC Press, Boca Raton ISBN: 9780429191121 DOI: https://doi.org/10.1201/9781420039900
  • Kacar B (2016). Physical and chemical soil analysis. Nobel Publications and Distribution, Ankara, Turkey (In Turkish).
  • Kafkasyalı D (2021). Physiological, morphological, biochemical and transcriptional effects of copper toxicity in plants. Selçuk University, Faculty of Science, Journal of Science 47(1): 16-34. DOI: https://doi.org/10.35238/sufefd.857192
  • Kumar S, Wang M, Liu Y, Fahad S, Qayyum A, Jadoon S A, Chen Y & Zhu G (2022). Nickel toxicity alters growth patterns and induces oxidative stress response in sweet potato. Frontiers in Plant Science 13: 1054924. DOI: 10.3389/fpls.2022.1054924
  • Kumar A, Jigyasu D K, Kumar A, Subrahmanyam G, Mondal R, Shabnam A A, Cabral-Pinto M M S, Malyan S K, Chaturvedi A K, Gupta D K, Fagodiya R K, Khan S A & Bhatia A (2021). Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 275: 129996. DOI: 10.1016/j.chemosphere.2021.129996
  • Lothe A G, Hansda A & Kumar V (2016). Phytoremediation of copper-contaminated soil using Helianthus annuus, Brassica nigra, and Lycopersicon esculentum Mill.: A pot scale study. Environmental Quality Management 25(4): 63-70. DOI: https://doi.org/10.1002/tqem.21463
  • Lwalaba J L W, Louis L T, Zvobgo G, Fu L, Mwamba T M, Mundende R P M & Zhang G (2019). Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals. Ecotoxicology and Environmental Safety 180: 234-241. DOI: https://doi.org/10.1016/j.ecoenv.2019.04.077
  • Macedo F G, Bresolin J D, Santos E F, Furlan F, Lopes da Silva W T, Polacco J C & Lavres J (2016). Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Frontiers in Plant Science 7: 1358. DOI: 10.3389/fpls.2016.01358
  • Manara A, Fasani E, Furini A & DalCorso G (2020). Evolution of the metal hyperaccumulation and hypertolerance traits.Plant, Cell & Environment 43(12): 2969–2986.DOI: https://doi.org/10.1111/pce.13821.
  • McGrath S P & Zhao F J (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14(3): 277-282. DOI: https://doi.org/10.1016/S0958-1669(03)00060-0
  • Nazir F, Hussain A & Fariduddin Q (2019). Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 230: 544-558. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.001
  • Negi S (2018). Heavy metal accumulation in Portulaca oleracea Linn. Journal of Pharmacognosy and Phytochemistry 7(3): 2978-2982
  • Pietrelli L, Menegoni P & Papetti P (2022). Bioaccumulation of heavy metals by herbaceous species grown in urban and rural sites. Water, Air & Soil Pollution 233(4): 141. DOI: https://doi.org/10.1007/s11270-022-05577
  • Ramteke S, Sahu L B, Dahariya S N, Patel S K, Blazhev B & Matini L (2016). Heavy metal contamination of vegetables. Journal of Environmental Protection 7(7): 996-1004. DOI: 10.4236/jep.2016.77088
  • Ren S & White L (2019). Genetic variation of copper stress tolerance and shoot copper accumulation in Purslane (Portulaca oleracea). Journal of Biotech Research 10: 213-222. ISSN: 1944-3285
  • Rostami S & Azhdarpoor A (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220: 818–827. DOI: 10.1016/j.chemosphere.2018.12.203
  • Salehi M, Salehi F, Poustini K & Heidari-Sharifabad H (2008). The effect of salinity on the nitrogen fixation in 4 cultivars of Medicago sativa L. in the seedling emergence stage. Research Journal of Agriculture and Biological Sciences 4(5): 413-415
  • Shrivastava M, Khandelwal A & Srivastava S (2019). Heavy metal hyperaccumulator plants: the resource to understand the extreme adaptations of plants towards heavy metals. Plant-Metal Interactions 79-97. DOI: 10.1007/978-3-030-20732-85
  • Silva I C, Rocha C, Rocha M C & Sousa M C (2018). Growth of Brachiaria decumbens in Latosol contaminated with copper. Ciência e Agrotecnologia 42(2): 168-175. DOI: http://dx.doi.org/10.1590/1413-70542018422030317
  • Sossé B A, Genet P, Dunand-Vinit F, Toussaint L M, Epron D & Badot P M (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbonhydrate accumulation and changes in ion contents. Plant Science 166(5): 1213-1218. DOI: https://doi.org/10.1016/j.plantsci.2003.12.032
  • Sytar O, Ghosh S, Malinska H, Zivcak M & Brestic M (2021). Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum 173(1): 148-166. DOI: 10.1111/ppl.13285
  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S & Cakmak I (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology 20(3): 181-189. DOI: https://doi.org/10.1016/j.jtemb.2005.12.004
  • Xu X, Yu L & Chen G (2006). Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis 41(2): 493–499. DOI: 10.1016/j.jpba.2006.01.013
  • Yadegari M (2018). Performance of purslane (Portulaca oleracea) in nickel and cadmium contaminated soil as a heavy metals-removing crop. Iranian Journal of Plant Physiology 8(3): 2447–2455. DOI: 10.30495/IJPP.2018.540891
  • Yoon J, Cao X, Zhou Q & Ma L Q (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368(2): 456-464. DOI: https://doi.org/10.1016/j.scitotenv.2006.01.016
  • Zu Y Q, Li Y, Chen J J, Chen H Y, Qin L, Schvartz C (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International 31(5): 755-762. DOI: https://doi.org/10.1016/j.envint.2005.02.004
Yıl 2024, Cilt: 30 Sayı: 2, 284 - 292, 26.03.2024
https://doi.org/10.15832/ankutbd.1346861

Öz

Kaynakça

  • Alloway B J (Ed.) (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed., pp. 195–210). Environmental Pollution. DOI: https://doi.org/10.1007/978-94-007-4470-7
  • Angulo-Bejarano P I, Puente-Rivera J & Cruz-Ortega R (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 10(4): 635. DOI: https://doi.org/10.3390/plants 10040635
  • Awan S A, Ilyas N, Khan I, Raza M A, Rehman A U, Rizwan M, Rastogi A, Tariq R & Brestic M (2020). Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants 9(7): 878. DOI: 10.3390/plants9070878
  • Baker A J M, McGrath S P, Reeves R D & Smith J A C (2000). Metal hyperaccumulator plants: A review of the ecology and physiology f a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (editors). Phytoremediation of Contaminated Soil and Water. Boca Raton, Florida: CRC Press. pp. 85-107. ISBN: 9780367803148 (Online)
  • Chandra R, Kumar K & Singh J (2004). Impact of anaerobically treated and untreated (raw) distillery effluent irrigation on soil microflora, growth, total chlorophyll and protein contents of Phaseolus aureus L. Journal of Environmental Biology 25(4): 381-385, PMID: 15907064.
  • Dalyan E (2012). The Identification and Characterization of Heavy Metal Stress Responsive Genes in Brassica juncea var. P78. PhD Dissertation. Institute of Natural and Applied Sciences, Istanbul University, Istanbul, Turkey
  • Dunand D V, Epron D, Alaoui-Sossé B & Badot P M (2002). Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science 163(1): 53-58. DOI: https://doi.org/10.1016/S0168-9452(02)00060-2.
  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J & Kynicky J (2017). Oxidative stress and heavy metals in plants. Reviews of Environmental Contamination and Toxicology 245: 129–156. DOI: 10.1007/398_2017_7
  • ISO 11466 International Standard (1995). ISO 11466 International Standard Soil Quality — Extraction of Trace Elements Soluble in Aqua Regia, International Organization for Standardization, Genève, Switzerland Jabeen R, Ahmad A & Iqbal M (2009).
  • Phytoremediation of heavy metals: Physiological and molecular mechanisms. The Botanical Reviews 75(4): 339-364. DOI: https://doi.org/10.1007/s12229-009-9036x
  • Jaime-Pérez N, Kaftan D, Bína D, Bokhari S N H, Shreedhar S & Küpper H (2019). Mechanisms of sublethal copper toxicity damage to the photosynthetic apparatus of Rhodospirillum rubrum. Biochimica et Biophysica Acta (BBA)- Bioenergetics 1860(8): 640–650. DOI: https://doi.org/10.1016/j.bbabio.2019.06.004
  • Kabata A, Pendias H (2001). Trace elements in soil and plants. FL: CRC Press, Boca Raton ISBN: 9780429191121 DOI: https://doi.org/10.1201/9781420039900
  • Kacar B (2016). Physical and chemical soil analysis. Nobel Publications and Distribution, Ankara, Turkey (In Turkish).
  • Kafkasyalı D (2021). Physiological, morphological, biochemical and transcriptional effects of copper toxicity in plants. Selçuk University, Faculty of Science, Journal of Science 47(1): 16-34. DOI: https://doi.org/10.35238/sufefd.857192
  • Kumar S, Wang M, Liu Y, Fahad S, Qayyum A, Jadoon S A, Chen Y & Zhu G (2022). Nickel toxicity alters growth patterns and induces oxidative stress response in sweet potato. Frontiers in Plant Science 13: 1054924. DOI: 10.3389/fpls.2022.1054924
  • Kumar A, Jigyasu D K, Kumar A, Subrahmanyam G, Mondal R, Shabnam A A, Cabral-Pinto M M S, Malyan S K, Chaturvedi A K, Gupta D K, Fagodiya R K, Khan S A & Bhatia A (2021). Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 275: 129996. DOI: 10.1016/j.chemosphere.2021.129996
  • Lothe A G, Hansda A & Kumar V (2016). Phytoremediation of copper-contaminated soil using Helianthus annuus, Brassica nigra, and Lycopersicon esculentum Mill.: A pot scale study. Environmental Quality Management 25(4): 63-70. DOI: https://doi.org/10.1002/tqem.21463
  • Lwalaba J L W, Louis L T, Zvobgo G, Fu L, Mwamba T M, Mundende R P M & Zhang G (2019). Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals. Ecotoxicology and Environmental Safety 180: 234-241. DOI: https://doi.org/10.1016/j.ecoenv.2019.04.077
  • Macedo F G, Bresolin J D, Santos E F, Furlan F, Lopes da Silva W T, Polacco J C & Lavres J (2016). Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Frontiers in Plant Science 7: 1358. DOI: 10.3389/fpls.2016.01358
  • Manara A, Fasani E, Furini A & DalCorso G (2020). Evolution of the metal hyperaccumulation and hypertolerance traits.Plant, Cell & Environment 43(12): 2969–2986.DOI: https://doi.org/10.1111/pce.13821.
  • McGrath S P & Zhao F J (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14(3): 277-282. DOI: https://doi.org/10.1016/S0958-1669(03)00060-0
  • Nazir F, Hussain A & Fariduddin Q (2019). Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 230: 544-558. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.001
  • Negi S (2018). Heavy metal accumulation in Portulaca oleracea Linn. Journal of Pharmacognosy and Phytochemistry 7(3): 2978-2982
  • Pietrelli L, Menegoni P & Papetti P (2022). Bioaccumulation of heavy metals by herbaceous species grown in urban and rural sites. Water, Air & Soil Pollution 233(4): 141. DOI: https://doi.org/10.1007/s11270-022-05577
  • Ramteke S, Sahu L B, Dahariya S N, Patel S K, Blazhev B & Matini L (2016). Heavy metal contamination of vegetables. Journal of Environmental Protection 7(7): 996-1004. DOI: 10.4236/jep.2016.77088
  • Ren S & White L (2019). Genetic variation of copper stress tolerance and shoot copper accumulation in Purslane (Portulaca oleracea). Journal of Biotech Research 10: 213-222. ISSN: 1944-3285
  • Rostami S & Azhdarpoor A (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220: 818–827. DOI: 10.1016/j.chemosphere.2018.12.203
  • Salehi M, Salehi F, Poustini K & Heidari-Sharifabad H (2008). The effect of salinity on the nitrogen fixation in 4 cultivars of Medicago sativa L. in the seedling emergence stage. Research Journal of Agriculture and Biological Sciences 4(5): 413-415
  • Shrivastava M, Khandelwal A & Srivastava S (2019). Heavy metal hyperaccumulator plants: the resource to understand the extreme adaptations of plants towards heavy metals. Plant-Metal Interactions 79-97. DOI: 10.1007/978-3-030-20732-85
  • Silva I C, Rocha C, Rocha M C & Sousa M C (2018). Growth of Brachiaria decumbens in Latosol contaminated with copper. Ciência e Agrotecnologia 42(2): 168-175. DOI: http://dx.doi.org/10.1590/1413-70542018422030317
  • Sossé B A, Genet P, Dunand-Vinit F, Toussaint L M, Epron D & Badot P M (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbonhydrate accumulation and changes in ion contents. Plant Science 166(5): 1213-1218. DOI: https://doi.org/10.1016/j.plantsci.2003.12.032
  • Sytar O, Ghosh S, Malinska H, Zivcak M & Brestic M (2021). Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum 173(1): 148-166. DOI: 10.1111/ppl.13285
  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S & Cakmak I (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology 20(3): 181-189. DOI: https://doi.org/10.1016/j.jtemb.2005.12.004
  • Xu X, Yu L & Chen G (2006). Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis 41(2): 493–499. DOI: 10.1016/j.jpba.2006.01.013
  • Yadegari M (2018). Performance of purslane (Portulaca oleracea) in nickel and cadmium contaminated soil as a heavy metals-removing crop. Iranian Journal of Plant Physiology 8(3): 2447–2455. DOI: 10.30495/IJPP.2018.540891
  • Yoon J, Cao X, Zhou Q & Ma L Q (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368(2): 456-464. DOI: https://doi.org/10.1016/j.scitotenv.2006.01.016
  • Zu Y Q, Li Y, Chen J J, Chen H Y, Qin L, Schvartz C (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International 31(5): 755-762. DOI: https://doi.org/10.1016/j.envint.2005.02.004
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Besleme ve Toprak Verimliliği, Toprak Ekolojisi, Toprak ve Su Kaynaklarının Korunması ve Islahı
Bölüm Makaleler
Yazarlar

Havva Aybike Erkoç Bu kişi benim 0000-0003-1279-4234

Bihter Çolak Esetlili 0000-0001-5707-2011

Yayımlanma Tarihi 26 Mart 2024
Gönderilme Tarihi 26 Ağustos 2023
Kabul Tarihi 3 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 2

Kaynak Göster

APA Erkoç, H. A., & Çolak Esetlili, B. (2024). Potential of Purslane (Portulaca oleracea L.) in Phytoremediation: A Study on the Bioaccumulation and Bio-Transfer of Cadmium, Nickel, and Copper in Contaminated Soils. Journal of Agricultural Sciences, 30(2), 284-292. https://doi.org/10.15832/ankutbd.1346861

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).